A Practical Approach to Causal Inference over Time
- URL: http://arxiv.org/abs/2410.10502v1
- Date: Mon, 14 Oct 2024 13:45:20 GMT
- Title: A Practical Approach to Causal Inference over Time
- Authors: Martina Cinquini, Isacco Beretta, Salvatore Ruggieri, Isabel Valera,
- Abstract summary: We define causal interventions and their effects over time on discrete-time processes (DSPs)
We show under which conditions the equilibrium states of a DSP, both before and after a causal intervention, can be captured by a structural causal model (SCM)
The resulting causal VAR framework allows us to perform causal inference over time from observational time series data.
- Score: 17.660953125689105
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we focus on estimating the causal effect of an intervention over time on a dynamical system. To that end, we formally define causal interventions and their effects over time on discrete-time stochastic processes (DSPs). Then, we show under which conditions the equilibrium states of a DSP, both before and after a causal intervention, can be captured by a structural causal model (SCM). With such an equivalence at hand, we provide an explicit mapping from vector autoregressive models (VARs), broadly applied in econometrics, to linear, but potentially cyclic and/or affected by unmeasured confounders, SCMs. The resulting causal VAR framework allows us to perform causal inference over time from observational time series data. Our experiments on synthetic and real-world datasets show that the proposed framework achieves strong performance in terms of observational forecasting while enabling accurate estimation of the causal effect of interventions on dynamical systems. We demonstrate, through a case study, the potential practical questions that can be addressed using the proposed causal VAR framework.
Related papers
- Generative Intervention Models for Causal Perturbation Modeling [80.72074987374141]
In many applications, it is a priori unknown which mechanisms of a system are modified by an external perturbation.
We propose a generative intervention model (GIM) that learns to map these perturbation features to distributions over atomic interventions.
arXiv Detail & Related papers (2024-11-21T10:37:57Z) - DAG-aware Transformer for Causal Effect Estimation [0.8192907805418583]
Causal inference is a critical task across fields such as healthcare, economics, and the social sciences.
In this paper, we present a novel transformer-based method for causal inference that overcomes these challenges.
The core innovation of our model lies in its integration of causal Directed Acyclic Graphs (DAGs) directly into the attention mechanism.
arXiv Detail & Related papers (2024-10-13T23:17:58Z) - On the Identification of Temporally Causal Representation with Instantaneous Dependence [50.14432597910128]
Temporally causal representation learning aims to identify the latent causal process from time series observations.
Most methods require the assumption that the latent causal processes do not have instantaneous relations.
We propose an textbfIDentification framework for instantanetextbfOus textbfLatent dynamics.
arXiv Detail & Related papers (2024-05-24T08:08:05Z) - Estimating Direct and Indirect Causal Effects of Spatiotemporal Interventions in Presence of Spatial Interference [0.46052594866569146]
We first extend the concept of spatial interference in case of time-varying treatment outcomes by extending the potential outcome framework under the assumption of no unmeasured confounding.
We then propose our deep learning based potential outcome model fortemporal causal inference.
We utilize latent factor modeling to reduce interference due to time-varying confounding while leveraging the power of U-Net architecture to capture global spatial interference in data over time.
arXiv Detail & Related papers (2024-05-13T20:39:27Z) - Advancing Counterfactual Inference through Nonlinear Quantile Regression [77.28323341329461]
We propose a framework for efficient and effective counterfactual inference implemented with neural networks.
The proposed approach enhances the capacity to generalize estimated counterfactual outcomes to unseen data.
Empirical results conducted on multiple datasets offer compelling support for our theoretical assertions.
arXiv Detail & Related papers (2023-06-09T08:30:51Z) - Inference on Causal Effects of Interventions in Time using Gaussian
Processes [0.0]
This paper focuses on drawing inference on the causal impact of an intervention at a specific time point.
We operate on the interrupted time series framework and expand on approaches such as the synthetic control.
The developed models possess a high degree of flexibility posing very little limitations on the functional form.
arXiv Detail & Related papers (2022-10-06T12:10:57Z) - Causal Discovery from Conditionally Stationary Time Series [18.645887749731923]
State-Dependent Causal Inference (SDCI) is able to recover the underlying causal dependencies, provably with fully-observed states and empirically with hidden states.
improved results over non-causal RNNs on modeling NBA player movements demonstrate the potential of our method.
arXiv Detail & Related papers (2021-10-12T18:12:57Z) - Discovering Latent Causal Variables via Mechanism Sparsity: A New
Principle for Nonlinear ICA [81.4991350761909]
Independent component analysis (ICA) refers to an ensemble of methods which formalize this goal and provide estimation procedure for practical application.
We show that the latent variables can be recovered up to a permutation if one regularizes the latent mechanisms to be sparse.
arXiv Detail & Related papers (2021-07-21T14:22:14Z) - Efficient Causal Inference from Combined Observational and
Interventional Data through Causal Reductions [68.6505592770171]
Unobserved confounding is one of the main challenges when estimating causal effects.
We propose a novel causal reduction method that replaces an arbitrary number of possibly high-dimensional latent confounders.
We propose a learning algorithm to estimate the parameterized reduced model jointly from observational and interventional data.
arXiv Detail & Related papers (2021-03-08T14:29:07Z) - Estimating the Effects of Continuous-valued Interventions using
Generative Adversarial Networks [103.14809802212535]
We build on the generative adversarial networks (GANs) framework to address the problem of estimating the effect of continuous-valued interventions.
Our model, SCIGAN, is flexible and capable of simultaneously estimating counterfactual outcomes for several different continuous interventions.
To address the challenges presented by shifting to continuous interventions, we propose a novel architecture for our discriminator.
arXiv Detail & Related papers (2020-02-27T18:46:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.