論文の概要: Biological neurons act as generalization filters in reservoir computing
- arxiv url: http://arxiv.org/abs/2210.02913v1
- Date: Thu, 6 Oct 2022 13:32:26 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-07 17:31:19.783846
- Title: Biological neurons act as generalization filters in reservoir computing
- Title(参考訳): 生物ニューロンは貯水池計算における一般化フィルタとして働く
- Authors: Takuma Sumi, Hideaki Yamamoto, Yuichi Katori, Satoshi Moriya, Tomohiro
Konno, Shigeo Sato, Ayumi Hirano-Iwata
- Abstract要約: 貯留層計算(Reservoir computing)は、時系列データを処理するための高次元非線形システムの過渡ダイナミクスを変換する機械学習パラダイムである。
ここでは、オプトジェネティクスと蛍光カルシウムイメージングを用いて、培養生体神経ネットワーク(BNN)の多細胞応答を記録する。
線形デコーダを用いて静的な入力パターンの分類にモジュールBNNを用いることができ、BNNのモジュラリティは分類精度と正に相関することを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reservoir computing is a machine learning paradigm that transforms the
transient dynamics of high-dimensional nonlinear systems for processing
time-series data. Although reservoir computing was initially proposed to model
information processing in the mammalian cortex, it remains unclear how the
non-random network architecture, such as the modular architecture, in the
cortex integrates with the biophysics of living neurons to characterize the
function of biological neuronal networks (BNNs). Here, we used optogenetics and
fluorescent calcium imaging to record the multicellular responses of cultured
BNNs and employed the reservoir computing framework to decode their
computational capabilities. Micropatterned substrates were used to embed the
modular architecture in the BNNs. We first show that modular BNNs can be used
to classify static input patterns with a linear decoder and that the modularity
of the BNNs positively correlates with the classification accuracy. We then
used a timer task to verify that BNNs possess a short-term memory of ~1 s and
finally show that this property can be exploited for spoken digit
classification. Interestingly, BNN-based reservoirs allow transfer learning,
wherein a network trained on one dataset can be used to classify separate
datasets of the same category. Such classification was not possible when the
input patterns were directly decoded by a linear decoder, suggesting that BNNs
act as a generalization filter to improve reservoir computing performance. Our
findings pave the way toward a mechanistic understanding of information
processing within BNNs and, simultaneously, build future expectations toward
the realization of physical reservoir computing systems based on BNNs.
- Abstract(参考訳): 貯留層コンピューティングは、時系列データを処理するための高次元非線形システムの過渡ダイナミクスを変換する機械学習パラダイムである。
哺乳類の皮質における情報処理をモデル化するために貯水池コンピューティングが最初に提案されたが、モジュラーアーキテクチャのような非ランダムネットワークアーキテクチャが生体ニューロンの生理機能とどのように統合され、生体神経ネットワークの機能(BNN)が特徴づけられるかは不明である。
そこで我々は,培養BNNの多細胞応答を記録するために光遺伝学と蛍光カルシウムイメージングを用い,その計算能力をデコードするために貯水池計算フレームワークを用いた。
マイクロパターンの基板はモジュールアーキテクチャをBNNに埋め込むために使われた。
まず,線形デコーダによる静的入力パターンの分類にモジュール型BNNを用いることで,BNNのモジュラリティが分類精度と正の相関関係があることを示す。
次にタイマタスクを用いて,BNN が ~1 秒の短期記憶を持つことを検証し,この特性が音声桁分類に活用可能であることを示す。
興味深いことに、bnnベースのリザーバでは転送学習が可能で、ひとつのデータセットでトレーニングされたネットワークを使用して、同じカテゴリのデータセットを分類することができる。
このような分類は、入力パターンが線形デコーダによって直接デコードされると不可能であり、bnnが一般化フィルタとして機能し、貯留層計算性能を向上させることを示唆した。
本研究は,BNNにおける情報処理の機械的理解に向けての道を開くとともに,BNNに基づく物理貯水池コンピューティングシステムの実現に向けての今後の期待を構築するものである。
関連論文リスト
- Scalable Mechanistic Neural Networks [52.28945097811129]
長い時間的シーケンスを含む科学機械学習応用のための拡張ニューラルネットワークフレームワークを提案する。
元のメカニスティックニューラルネットワーク (MNN) を再構成することにより、計算時間と空間の複雑さを、それぞれ、列長に関して立方体と二次体から線形へと減少させる。
大規模な実験により、S-MNNは元のMNNと精度で一致し、計算資源を大幅に削減した。
論文 参考訳(メタデータ) (2024-10-08T14:27:28Z) - Use of Parallel Explanatory Models to Enhance Transparency of Neural Network Configurations for Cell Degradation Detection [18.214293024118145]
我々は,ニューラルネットワークの内部動作を照らし,理解するための並列モデルを構築している。
RNNの各層が入力分布を変換して検出精度を高める方法を示す。
同時に、精度の向上を制限するために作用する副作用も発見する。
論文 参考訳(メタデータ) (2024-04-17T12:22:54Z) - An exact mathematical description of computation with transient
spatiotemporal dynamics in a complex-valued neural network [33.7054351451505]
線形時間遅延相互作用を持つ複素数値ニューラルネットワーク(-NN)について検討する。
cv-NNは、部分的に同期したキメラ適応状態を含む洗練されたダイナミクスを表示する。
我々は,生体ニューロンによってcv-NN計算の計算が可能であることが実証された。
論文 参考訳(メタデータ) (2023-11-28T02:23:30Z) - How neural networks learn to classify chaotic time series [77.34726150561087]
本研究では,通常の逆カオス時系列を分類するために訓練されたニューラルネットワークの内部動作について検討する。
入力周期性とアクティベーション周期の関係は,LKCNNモデルの性能向上の鍵となる。
論文 参考訳(メタデータ) (2023-06-04T08:53:27Z) - Intelligence Processing Units Accelerate Neuromorphic Learning [52.952192990802345]
スパイキングニューラルネットワーク(SNN)は、エネルギー消費と遅延の観点から、桁違いに改善されている。
我々は、カスタムSNN PythonパッケージsnnTorchのIPU最適化リリースを提示する。
論文 参考訳(メタデータ) (2022-11-19T15:44:08Z) - PredRNN: A Recurrent Neural Network for Spatiotemporal Predictive
Learning [109.84770951839289]
歴史的文脈からビジュアルダイナミクスを学習するための新しいリカレントネットワークであるPredRNNを紹介する。
本手法は,3つの標準データセット上で高い競争結果が得られることを示す。
論文 参考訳(メタデータ) (2021-03-17T08:28:30Z) - A Temporal Neural Network Architecture for Online Learning [0.6091702876917281]
時間的ニューラルネットワーク(TNN)は、相対スパイク時間として符号化された情報を通信し、処理する。
TNNアーキテクチャを提案し、概念実証として、オンライン教師付き分類のより大きな文脈でTNNの動作を示す。
論文 参考訳(メタデータ) (2020-11-27T17:15:29Z) - Multi-Sample Online Learning for Probabilistic Spiking Neural Networks [43.8805663900608]
スパイキングニューラルネットワーク(SNN)は、推論と学習のための生物学的脳の効率の一部をキャプチャする。
本稿では,一般化予測最大化(GEM)に基づくオンライン学習ルールを提案する。
標準ニューロモルフィックデータセットにおける構造化された出力記憶と分類実験の結果,ログの類似性,精度,キャリブレーションの点で大きな改善が見られた。
論文 参考訳(メタデータ) (2020-07-23T10:03:58Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
スパイキングニューラルネットワーク(SNN)は、低レイテンシと高い計算効率のために、従来の人工知能ニューラルネットワーク(ANN)よりも優位性を示している。
高速かつ効率的なパターン認識のための新しいANN-to-SNN変換およびレイヤワイズ学習フレームワークを提案する。
論文 参考訳(メタデータ) (2020-07-02T15:38:44Z) - Recurrent Neural Network Learning of Performance and Intrinsic
Population Dynamics from Sparse Neural Data [77.92736596690297]
本稿では,RNNの入出力動作だけでなく,内部ネットワークのダイナミクスも学習できる新しいトレーニング戦略を提案する。
提案手法は、RNNを訓練し、生理学的にインスパイアされた神経モデルの内部ダイナミクスと出力信号を同時に再現する。
注目すべきは、トレーニングアルゴリズムがニューロンの小さなサブセットの活性に依存する場合であっても、内部動力学の再現が成功することである。
論文 参考訳(メタデータ) (2020-05-05T14:16:54Z) - Exploiting Neuron and Synapse Filter Dynamics in Spatial Temporal
Learning of Deep Spiking Neural Network [7.503685643036081]
空間的時間特性を持つ生物解析可能なSNNモデルは複雑な力学系である。
ニューロン非線形性を持つ無限インパルス応答(IIR)フィルタのネットワークとしてSNNを定式化する。
本稿では,最適シナプスフィルタカーネルと重みを求めることにより,時空間パターンを学習できる学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-02-19T01:27:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。