論文の概要: Use of Parallel Explanatory Models to Enhance Transparency of Neural Network Configurations for Cell Degradation Detection
- arxiv url: http://arxiv.org/abs/2404.11311v1
- Date: Wed, 17 Apr 2024 12:22:54 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-18 14:14:33.719601
- Title: Use of Parallel Explanatory Models to Enhance Transparency of Neural Network Configurations for Cell Degradation Detection
- Title(参考訳): 並列説明モデルを用いた細胞劣化検出のためのニューラルネットワーク構成の透明性向上
- Authors: David Mulvey, Chuan Heng Foh, Muhammad Ali Imran, Rahim Tafazolli,
- Abstract要約: 我々は,ニューラルネットワークの内部動作を照らし,理解するための並列モデルを構築している。
RNNの各層が入力分布を変換して検出精度を高める方法を示す。
同時に、精度の向上を制限するために作用する副作用も発見する。
- 参考スコア(独自算出の注目度): 18.214293024118145
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In a previous paper, we have shown that a recurrent neural network (RNN) can be used to detect cellular network radio signal degradations accurately. We unexpectedly found, though, that accuracy gains diminished as we added layers to the RNN. To investigate this, in this paper, we build a parallel model to illuminate and understand the internal operation of neural networks, such as the RNN, which store their internal state in order to process sequential inputs. This model is widely applicable in that it can be used with any input domain where the inputs can be represented by a Gaussian mixture. By looking at the RNN processing from a probability density function perspective, we are able to show how each layer of the RNN transforms the input distributions to increase detection accuracy. At the same time we also discover a side effect acting to limit the improvement in accuracy. To demonstrate the fidelity of the model we validate it against each stage of RNN processing as well as the output predictions. As a result, we have been able to explain the reasons for the RNN performance limits with useful insights for future designs for RNNs and similar types of neural network.
- Abstract(参考訳): 前報では、リカレントニューラルネットワーク(RNN)を用いて、セルネットワーク電波信号の劣化を正確に検出できることが示されている。
しかし、予想外の結果、RNNにレイヤーを追加すると精度が低下することがわかった。
そこで本研究では,連続的な入力を処理するために内部状態を格納するRNNなどのニューラルネットワークの内部動作を照らし,理解するための並列モデルを構築した。
このモデルは、入力がガウス混合で表現できる任意の入力領域で使用できるという点で広く応用できる。
確率密度関数の観点からのRNN処理から,RNNの各層が入力分布を変換して検出精度を高める方法を示すことができる。
同時に、精度の向上を制限するために作用する副作用も発見する。
モデルの忠実性を示すため、RNN処理の各ステージと出力予測に対して検証する。
その結果、RNNの性能制限の理由を、将来のRNNや同様のタイプのニューラルネットワークの設計に有用な洞察で説明することができた。
関連論文リスト
- Accurate Mapping of RNNs on Neuromorphic Hardware with Adaptive Spiking Neurons [2.9410174624086025]
我々は、SigmaDelta$-low-pass RNN(lpRNN)を、レートベースのRNNをスパイクニューラルネットワーク(SNN)にマッピングするために提示する。
適応スパイキングニューロンモデルは、$SigmaDelta$-modulationを使って信号を符号化し、正確なマッピングを可能にする。
我々は、Intelのニューロモルフィック研究チップLoihiにおけるlpRNNの実装を実演する。
論文 参考訳(メタデータ) (2024-07-18T14:06:07Z) - Deep Neural Networks Tend To Extrapolate Predictably [51.303814412294514]
ニューラルネットワークの予測は、アウト・オブ・ディストリビューション(OOD)入力に直面した場合、予測不可能で過信される傾向がある。
我々は、入力データがOODになるにつれて、ニューラルネットワークの予測が一定値に向かう傾向があることを観察する。
我々は、OOD入力の存在下でリスクに敏感な意思決定を可能にするために、私たちの洞察を実際に活用する方法を示します。
論文 参考訳(メタデータ) (2023-10-02T03:25:32Z) - Signal Processing for Implicit Neural Representations [80.38097216996164]
Inlicit Neural Representation (INR)は、マルチ層パーセプトロンを介して連続したマルチメディアデータを符号化する。
既存の作業は、その離散化されたインスタンスの処理を通じて、そのような連続的な表現を操作する。
本稿では,INSP-Netと呼ばれる暗黙的ニューラル信号処理ネットワークを提案する。
論文 参考訳(メタデータ) (2022-10-17T06:29:07Z) - Automated machine learning for borehole resistivity measurements [0.0]
ディープニューラルネットワーク(DNN)は、ボアホール比抵抗測定の反転のためのリアルタイムソリューションを提供する。
非常に大きなDNNを使って演算子を近似することができるが、かなりの訓練時間を必要とする。
本研究では,DNNの精度とサイズを考慮したスコアリング機能を提案する。
論文 参考訳(メタデータ) (2022-07-20T12:27:22Z) - Saving RNN Computations with a Neuron-Level Fuzzy Memoization Scheme [0.0]
リカレントニューラルネットワーク(Recurrent Neural Networks, RNN)は、音声認識や機械翻訳などのアプリケーションにおいて重要な技術である。
我々は,各ニューロンの出力を動的にキャッシュし,現在の出力が以前計算された結果に類似すると予測されたときに再利用する,ニューロンレベルのファジィメモ化スキームを構築した。
提案手法は26.7%以上の計算を回避し、21%の省エネと1.4倍の高速化を実現している。
論文 参考訳(メタデータ) (2022-02-14T09:02:03Z) - Implementing a foveal-pit inspired filter in a Spiking Convolutional
Neural Network: a preliminary study [0.0]
我々は,網膜卵管刺激によるガウスフィルタとランク順符号化の差異を取り入れたスポーキング畳み込みニューラルネットワーク(SCNN)を提示した。
このモデルは、Nengoライブラリーで実装されているように、スパイキングニューロンで動作するように適応されたバックプロパゲーションアルゴリズムの変種を用いて訓練される。
ネットワークは最大90%の精度で達成され、損失はクロスエントロピー関数を用いて計算される。
論文 参考訳(メタデータ) (2021-05-29T15:28:30Z) - UCNN: A Convolutional Strategy on Unstructured Mesh [1.871055320062469]
流体力学の機械学習では、フルコネクテッドニューラルネットワーク(FNN)はモデリングのローカル機能のみを使用します。
非構造畳み込みニューラルネットワーク(UCNN)が提案され、重み関数を通じて近隣ノードの特徴を集約し、効果的に活用する。
その結果,UCNNはモデリング過程においてより正確であることが示唆された。
論文 参考訳(メタデータ) (2021-01-12T10:48:25Z) - Modeling from Features: a Mean-field Framework for Over-parameterized
Deep Neural Networks [54.27962244835622]
本稿では、オーバーパラメータ化ディープニューラルネットワーク(DNN)のための新しい平均場フレームワークを提案する。
このフレームワークでは、DNNは連続的な極限におけるその特徴に対する確率測度と関数によって表現される。
本稿では、標準DNNとResidual Network(Res-Net)アーキテクチャを通してフレームワークを説明する。
論文 参考訳(メタデータ) (2020-07-03T01:37:16Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
スパイキングニューラルネットワーク(SNN)は、低レイテンシと高い計算効率のために、従来の人工知能ニューラルネットワーク(ANN)よりも優位性を示している。
高速かつ効率的なパターン認識のための新しいANN-to-SNN変換およびレイヤワイズ学習フレームワークを提案する。
論文 参考訳(メタデータ) (2020-07-02T15:38:44Z) - Stochastic Graph Neural Networks [123.39024384275054]
グラフニューラルネットワーク(GNN)は、分散エージェント調整、制御、計画に応用したグラフデータの非線形表現をモデル化する。
現在のGNNアーキテクチャは理想的なシナリオを前提として,環境やヒューマンファクタ,あるいは外部攻撃によるリンク変動を無視している。
これらの状況において、GNNは、トポロジカルなランダム性を考慮していない場合、その分散タスクに対処することができない。
論文 参考訳(メタデータ) (2020-06-04T08:00:00Z) - Binarized Graph Neural Network [65.20589262811677]
我々は二項化グラフニューラルネットワークを開発し、二項化ネットワークパラメータを用いてノードのバイナリ表現を学習する。
提案手法は既存のGNNベースの埋め込み手法にシームレスに統合できる。
実験により、提案された二項化グラフニューラルネットワーク、すなわちBGNは、時間と空間の両方の観点から、桁違いに効率的であることが示されている。
論文 参考訳(メタデータ) (2020-04-19T09:43:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。