Quantum computation of dynamical quantum phase transitions and
entanglement tomography in a lattice gauge theory
- URL: http://arxiv.org/abs/2210.03089v2
- Date: Mon, 11 Sep 2023 21:42:33 GMT
- Title: Quantum computation of dynamical quantum phase transitions and
entanglement tomography in a lattice gauge theory
- Authors: Niklas Mueller, Joseph A. Carolan, Andrew Connelly, Zohreh Davoudi,
Eugene F. Dumitrescu, K\"ubra Yeter-Aydeniz
- Abstract summary: Strongly-coupled gauge theories far from equilibrium may exhibit unique features that could illuminate the physics of the early universe.
We compute non-equal time correlation functions and perform entanglement tomography of non-equilibrium states of a simple lattice gauge theory.
Results constitute the first observation of a dynamical quantum phase transition in a lattice gauge theory on a quantum computer.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Strongly-coupled gauge theories far from equilibrium may exhibit unique
features that could illuminate the physics of the early universe and of hadron
and ion colliders. Studying real-time phenomena has proven challenging with
classical-simulation methods, but is a natural application of quantum
simulation. To demonstrate this prospect, we quantum compute non-equal time
correlation functions and perform entanglement tomography of non-equilibrium
states of a simple lattice gauge theory, the Schwinger model, using a
trapped-ion quantum computer by IonQ Inc. As an ideal target for near-term
devices, a recently-predicted [Zache et al., Phys. Rev. Lett. 122, 050403
(2019)] dynamical quantum phase transition in this model is studied by
preparing, quenching, and tracking the subsequent non-equilibrium dynamics in
three ways: i) overlap echos signaling dynamical transitions, ii) non-equal
time correlation functions with an underlying topological nature, and iii) the
entanglement structure of non-equilibrium states, including entanglement
Hamiltonians. These results constitute the first observation of a dynamical
quantum phase transition in a lattice gauge theory on a quantum computer, and
are a first step toward investigating topological phenomena in nuclear and
high-energy physics using quantum technologies.
Related papers
- Thermalization and Criticality on an Analog-Digital Quantum Simulator [133.58336306417294]
We present a quantum simulator comprising 69 superconducting qubits which supports both universal quantum gates and high-fidelity analog evolution.
We observe signatures of the classical Kosterlitz-Thouless phase transition, as well as strong deviations from Kibble-Zurek scaling predictions.
We digitally prepare the system in pairwise-entangled dimer states and image the transport of energy and vorticity during thermalization.
arXiv Detail & Related papers (2024-05-27T17:40:39Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Non-equilibrium quantum domain reconfiguration dynamics in a
two-dimensional electronic crystal: experiments and quantum simulations [0.0]
We study quantum domain reconfiguration dynamics in the electronic superlattice of a quantum material.
The crossover from temperature to quantum fluctuation dominated dynamics in the context of environmental noise is investigated.
The results are important for understanding the origin of the retention time in non-volatile memory devices.
arXiv Detail & Related papers (2021-03-12T15:22:10Z) - Characterizing the dynamical phase diagram of the Dicke model via
classical and quantum probes [0.0]
We study the dynamical phase diagram of the Dicke model in both classical and quantum limits.
Our numerical calculations demonstrate that mean-field features of the dynamics remain valid in the exact quantum dynamics.
Our predictions can be verified in current quantum simulators of the Dicke model including arrays of trapped ions.
arXiv Detail & Related papers (2021-02-03T19:05:56Z) - Quantum Non-equilibrium Many-Body Spin-Photon Systems [91.3755431537592]
dissertation concerns the quantum dynamics of strongly-correlated quantum systems in out-of-equilibrium states.
Our main results can be summarized in three parts: Signature of Critical Dynamics, Driven Dicke Model as a Test-bed of Ultra-Strong Coupling, and Beyond the Kibble-Zurek Mechanism.
arXiv Detail & Related papers (2020-07-23T19:05:56Z) - Unraveling the topology of dissipative quantum systems [58.720142291102135]
We discuss topology in dissipative quantum systems from the perspective of quantum trajectories.
We show for a broad family of translation-invariant collapse models that the set of dark state-inducing Hamiltonians imposes a nontrivial topological structure on the space of Hamiltonians.
arXiv Detail & Related papers (2020-07-12T11:26:02Z) - State preparation and measurement in a quantum simulation of the O(3)
sigma model [65.01359242860215]
We show that fixed points of the non-linear O(3) sigma model can be reproduced near a quantum phase transition of a spin model with just two qubits per lattice site.
We apply Trotter methods to obtain results for the complexity of adiabatic ground state preparation in both the weak-coupling and quantum-critical regimes.
We present and analyze a quantum algorithm based on non-unitary randomized simulation methods.
arXiv Detail & Related papers (2020-06-28T23:44:12Z) - Non-equilibrium phase transitions in $(1+1)$-dimensional quantum
cellular automata with controllable quantum correlations [0.0]
We introduce and investigate the dynamics of a class of $(1+1)$-dimensional quantum cellular automata.
We show that projected entangled pair state tensor networks permit a natural and efficient representation of the cellular automaton.
arXiv Detail & Related papers (2020-02-21T11:47:01Z) - Detecting dynamical quantum phase transition via out-of-time-order
correlations in a solid-state quantum simulator [12.059058714600607]
We develop and experimentally demonstrate that out-of-time-order correlators can be used to detect nonoequilibrium phase transitions in the transverse field Ising model.
Further applications of this protocol could enable studies other of exotic phenomena such as many body localization, and tests of the holographic duality between quantum and gravitational systems.
arXiv Detail & Related papers (2020-01-17T14:28:42Z) - Experimental Observation of Equilibrium and Dynamical Quantum Phase
Transitions via Out-of-Time-Ordered Correlators [14.389514788367086]
We report the first experimental observation of EQPTs and DQPTs in a quantum spin chain via quench dynamics of OTOC on a nuclear magnetic resonance quantum simulator.
We demonstrate that the long-time average value of the OTOC in quantum quench signals the equilibrium quantum critical point and ordered quantum phases.
arXiv Detail & Related papers (2019-12-27T09:35:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.