論文の概要: Enabling Deep Learning on Edge Devices
- arxiv url: http://arxiv.org/abs/2210.03204v1
- Date: Thu, 6 Oct 2022 20:52:57 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-10 12:41:20.580028
- Title: Enabling Deep Learning on Edge Devices
- Title(参考訳): エッジデバイスによるディープラーニングの実現
- Authors: Zhongnan Qu
- Abstract要約: ディープニューラルネットワーク(DNN)は、コンピュータビジョン、自然言語処理、強化学習など、多くの異なる認識タスクに成功している。
高性能DNNは資源消費に大きく依存している。
近年、AR/VR、モバイルアシスタント、モノのインターネットなど、新たなインテリジェントなアプリケーションでは、リソース制約のあるエッジデバイスにDNNをデプロイする必要があります。
この論文では,エッジデバイスへの推論,エッジデバイスへの適応,エッジデバイスへの学習,エッジサーバシステムという4つのエッジインテリジェンスシナリオについて検討した。
- 参考スコア(独自算出の注目度): 2.741266294612776
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep neural networks (DNNs) have succeeded in many different perception
tasks, e.g., computer vision, natural language processing, reinforcement
learning, etc. The high-performed DNNs heavily rely on intensive resource
consumption. For example, training a DNN requires high dynamic memory, a
large-scale dataset, and a large number of computations (a long training time);
even inference with a DNN also demands a large amount of static storage,
computations (a long inference time), and energy. Therefore, state-of-the-art
DNNs are often deployed on a cloud server with a large number of
super-computers, a high-bandwidth communication bus, a shared storage
infrastructure, and a high power supplement.
Recently, some new emerging intelligent applications, e.g., AR/VR, mobile
assistants, Internet of Things, require us to deploy DNNs on
resource-constrained edge devices. Compare to a cloud server, edge devices
often have a rather small amount of resources. To deploy DNNs on edge devices,
we need to reduce the size of DNNs, i.e., we target a better trade-off between
resource consumption and model accuracy.
In this dissertation, we studied four edge intelligence scenarios, i.e.,
Inference on Edge Devices, Adaptation on Edge Devices, Learning on Edge
Devices, and Edge-Server Systems, and developed different methodologies to
enable deep learning in each scenario. Since current DNNs are often
over-parameterized, our goal is to find and reduce the redundancy of the DNNs
in each scenario.
- Abstract(参考訳): ディープニューラルネットワーク(DNN)は、コンピュータビジョン、自然言語処理、強化学習など、多くの異なる認識タスクに成功している。
高性能DNNは資源消費に大きく依存している。
例えば、DNNのトレーニングには高ダイナミックメモリ、大規模なデータセット、大量の計算(長いトレーニング時間)が必要です。
そのため、最先端のdnnは、多数のスーパーコンピュータ、高帯域幅通信バス、共有ストレージインフラストラクチャ、高電力サプリメントを備えたクラウドサーバにデプロイされることが多い。
近年、AR/VR、モバイルアシスタント、モノのインターネットなど、新たなインテリジェントなアプリケーションでは、リソース制約のあるエッジデバイスにDNNをデプロイする必要があります。
クラウドサーバと比較して、エッジデバイスはリソースが比較的少ないことが多い。
エッジデバイスにDNNをデプロイするには、DNNのサイズを減らす必要がある。
本論文では,エッジデバイスへの推論,エッジデバイスへの適応,エッジデバイスへの学習,エッジサーバシステムという4つのエッジインテリジェンスシナリオについて検討し,各シナリオにおける深層学習を実現するための方法論を開発した。
現在のDNNは過パラメータ化されることが多いため、各シナリオにおけるDNNの冗長性を見つけて低減することが目標です。
関連論文リスト
- MatchNAS: Optimizing Edge AI in Sparse-Label Data Contexts via
Automating Deep Neural Network Porting for Mobile Deployment [54.77943671991863]
MatchNASはDeep Neural Networksをモバイルデバイスに移植するための新しいスキームである。
ラベル付きデータと非ラベル付きデータの両方を用いて、大規模なネットワークファミリを最適化する。
そして、さまざまなハードウェアプラットフォーム用に調整されたネットワークを自動的に検索する。
論文 参考訳(メタデータ) (2024-02-21T04:43:12Z) - SwapNet: Efficient Swapping for DNN Inference on Edge AI Devices Beyond
the Memory Budget [18.63754969602021]
エッジ人工知能(AI)デバイス上のディープニューラルネットワーク(DNN)は、さまざまな自律的なモバイルコンピューティングアプリケーションを可能にする。
モデル圧縮やクラウドオフロードといった既存のソリューションは、DNN推論のメモリフットプリントを減らす。
We developed SwapNet, a efficient block swapping ecosystem for edge AI devices。
論文 参考訳(メタデータ) (2024-01-30T05:29:49Z) - Fully Spiking Actor Network with Intra-layer Connections for
Reinforcement Learning [51.386945803485084]
エージェントが制御する多次元決定論的ポリシーを学習する必要があるタスクに焦点をあてる。
既存のスパイクベースのRL法は、SNNの出力として発火率を取り、完全に接続された層を通して連続的なアクション空間(つまり決定論的なポリシー)を表すように変換する。
浮動小数点行列操作を伴わない完全にスパイクするアクターネットワークを開発するため,昆虫に見られる非スパイク介在ニューロンからインスピレーションを得た。
論文 参考訳(メタデータ) (2024-01-09T07:31:34Z) - Sparse-DySta: Sparsity-Aware Dynamic and Static Scheduling for Sparse
Multi-DNN Workloads [65.47816359465155]
複数のディープニューラルネットワーク(DNN)を並列に実行することは、両エッジデバイスで新たなワークロードとなっている。
スパースマルチDNNスケジューリングに静的なスケジューラパターンと動的スケジューラ情報の両方を利用する新しいスケジューラDystaを提案する。
提案手法は, 遅延制約違反率を最大10%削減し, 平均正規化ターンアラウンド時間で約4倍に向上する。
論文 参考訳(メタデータ) (2023-10-17T09:25:17Z) - Designing and Training of Lightweight Neural Networks on Edge Devices
using Early Halting in Knowledge Distillation [16.74710649245842]
本稿では,エッジデバイス上での軽量ディープニューラルネットワーク(DNN)の設計と訓練のための新しいアプローチを提案する。
このアプローチでは、利用可能なストレージ、処理速度、許容可能な最大処理時間を考慮する。
本稿では,ネットワーク資源を保存できる新しい早期停止手法を提案する。
論文 参考訳(メタデータ) (2022-09-30T16:18:24Z) - Decentralized Low-Latency Collaborative Inference via Ensembles on the
Edge [28.61344039233783]
本稿では,複数のユーザが推論中に協力して精度を向上させることで,エッジ上でのディープニューラルネットワーク(DNN)の適用を容易にすることを提案する。
私たちのメカニズムは、エッジアンサンブル(em edge ensembles)と呼ばれ、各デバイスに様々な予測子を持ち、推論中にモデルのアンサンブルを形成する。
エッジアンサンブルによって引き起こされる遅延を分析し、その性能改善は、通信ネットワーク上の一般的な前提の下で、わずかな追加遅延のコストで生じることを示す。
論文 参考訳(メタデータ) (2022-06-07T10:24:20Z) - Dynamic Split Computing for Efficient Deep Edge Intelligence [78.4233915447056]
通信チャネルの状態に基づいて最適な分割位置を動的に選択する動的分割計算を導入する。
本研究では,データレートとサーバ負荷が時間とともに変化するエッジコンピューティング環境において,動的スプリットコンピューティングが高速な推論を実現することを示す。
論文 参考訳(メタデータ) (2022-05-23T12:35:18Z) - Pruning and Slicing Neural Networks using Formal Verification [0.2538209532048866]
ディープニューラルネットワーク(DNN)は、様々なコンピュータシステムにおいてますます重要な役割を担っている。
これらのネットワークを作成するために、エンジニアは通常、望ましいトポロジを指定し、自動トレーニングアルゴリズムを使用してネットワークの重みを選択する。
本稿では,近年のDNN検証の進歩を活用して,この問題に対処することを提案する。
論文 参考訳(メタデータ) (2021-05-28T07:53:50Z) - Boosting Deep Neural Networks with Geometrical Prior Knowledge: A Survey [77.99182201815763]
ディープニューラルネットワーク(DNN)は多くの異なる問題設定において最先端の結果を達成する。
DNNはしばしばブラックボックスシステムとして扱われ、評価と検証が複雑になる。
コンピュータビジョンタスクにおける畳み込みニューラルネットワーク(CNN)の成功に触発された、有望な分野のひとつは、対称幾何学的変換に関する知識を取り入れることである。
論文 参考訳(メタデータ) (2020-06-30T14:56:05Z) - Deep Learning for Ultra-Reliable and Low-Latency Communications in 6G
Networks [84.2155885234293]
まず,データ駆動型教師付き深層学習と深部強化学習をURLLCに適用する方法を概説する。
このようなオープンな問題に対処するために、デバイスインテリジェンス、エッジインテリジェンス、およびURLLCのためのクラウドインテリジェンスを可能にするマルチレベルアーキテクチャを開発した。
論文 参考訳(メタデータ) (2020-02-22T14:38:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。