Semi-quantum private comparison and its generalization to the key
agreement, summation, and anonymous ranking
- URL: http://arxiv.org/abs/2210.03421v1
- Date: Fri, 7 Oct 2022 09:40:36 GMT
- Title: Semi-quantum private comparison and its generalization to the key
agreement, summation, and anonymous ranking
- Authors: Chong-Qiang Ye, Jian Li, Xiu-Bo Chen, Yanyan Hou, Zhou Wang
- Abstract summary: Semi-quantum protocols construct connections between quantum users and classical'' users who can only perform certain classical'' operations.
We present a new semi-quantum private comparison protocol based on entangled states and single particles.
- Score: 12.16288190962638
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Semi-quantum protocols construct connections between quantum users and
``classical'' users who can only perform certain ``classical'' operations. In
this paper, we present a new semi-quantum private comparison protocol based on
entangled states and single particles, which does not require pre-shared keys
between the ``classical'' users to guarantee the security of their private
data. By utilizing multi-particle entangled states and single particles, our
protocol can be easily extended to multi-party scenarios to meet the
requirements of multiple ``classical'' users who want to compare their private
data. The security analysis shows that the protocol can effectively prevent
attacks from outside eavesdroppers and adversarial participants. Besides, we
generalize the proposed protocol to other semi-quantum protocols such as
semi-quantum key agreement, semi-quantum summation, and semi-quantum anonymous
ranking protocols. We compare and discuss the proposed protocols with previous
similar protocols. The results show that our protocols satisfy the demands of
their respective counterparts separately. Therefore, our protocols have a wide
range of application scenarios.
Related papers
- Quantum-private distributed sensing [37.69303106863453]
Quantum networks will provide unconditional security for communication, computation and distributed sensing tasks.
We report on an experimental demonstration of private parameter estimation, which allows a global phase to be evaluated without revealing the constituent local phase values.
This is achieved by sharing a Greenberger-Horne-Zeilinger (GHZ) state among three users who first verify the shared state before performing the sensing task.
arXiv Detail & Related papers (2024-10-01T18:00:08Z) - Quantum Two-Way Communication Protocol Beyond Superdense Coding [36.25599253958745]
We introduce a generalization of one-way superdense coding to two-way communication protocols for transmitting classical bits by using entangled quantum pairs.
The proposed protocol gives a 50% increase in both data rate and energy efficiency compared to the classical protocol.
arXiv Detail & Related papers (2023-09-06T08:48:07Z) - A Feasible Semi-quantum Private Comparison Based on Entanglement
Swapping of Bell States [5.548873288570182]
We propose a feasible semi-quantum private comparison protocol based on entanglement swapping of Bell states.
Security analysis shows that our protocol is resilient to both external and internal attacks.
Our proposed approach showcases the potential applications of entanglement swapping in the field of semi-quantum cryptography.
arXiv Detail & Related papers (2023-05-12T13:28:44Z) - A novel multi-party semiquantum private comparison protocol of size
relationship with d-dimensional single-particle states [0.0]
This protocol requires the help of one quantum third party (TP) and one classical TP.
Neither quantum entanglement swapping nor unitary operations are necessary for implementing this protocol.
arXiv Detail & Related papers (2022-08-30T16:35:55Z) - Conference key agreement in a quantum network [67.410870290301]
Quantum conference key agreement (QCKA) allows multiple users to establish a secure key from a shared multi-partite entangled state.
In a quantum network, this protocol can be efficiently implemented using a single copy of a N-qubit Greenberger-Horne-Zeilinger (GHZ) state to distil a secure N-user conference key bit.
arXiv Detail & Related papers (2022-07-04T18:00:07Z) - Byzantine-Robust Federated Learning with Optimal Statistical Rates and
Privacy Guarantees [123.0401978870009]
We propose Byzantine-robust federated learning protocols with nearly optimal statistical rates.
We benchmark against competing protocols and show the empirical superiority of the proposed protocols.
Our protocols with bucketing can be naturally combined with privacy-guaranteeing procedures to introduce security against a semi-honest server.
arXiv Detail & Related papers (2022-05-24T04:03:07Z) - Scalable Mediated Semi-quantum Key Distribution [5.548873288570182]
Mediated semi-quantum key distribution (M-SQKD) permits two limited "semi-quantum" or "classical" users to establish a secret key with the help of a third party (TP)
Several protocols have been studied recently for two-party scenarios, but no one has considered M-SQKD for multi-party scenarios.
arXiv Detail & Related papers (2022-05-13T09:21:12Z) - Improved Semi-Quantum Key Distribution with Two Almost-Classical Users [1.827510863075184]
We revisit a mediated semi-quantum key distribution protocol introduced by Massa et al.
We show how this protocol may be extended to improve its efficiency and also its noise tolerance.
We evaluate the protocol's performance in a variety of lossy and noisy channels.
arXiv Detail & Related papers (2022-03-20T14:41:14Z) - Multi-party Semi-quantum Secret Sharing Protocol based on Measure-flip and Reflect Operations [1.3812010983144802]
Semi-quantum secret sharing (SQSS) protocols serve as fundamental frameworks in quantum secure multi-party computations.
This paper proposes a novel SQSS protocol based on multi-particle GHZ states.
arXiv Detail & Related papers (2021-09-03T08:52:17Z) - Composably secure data processing for Gaussian-modulated continuous
variable quantum key distribution [58.720142291102135]
Continuous-variable quantum key distribution (QKD) employs the quadratures of a bosonic mode to establish a secret key between two remote parties.
We consider a protocol with homodyne detection in the general setting of composable finite-size security.
In particular, we analyze the high signal-to-noise regime which requires the use of high-rate (non-binary) low-density parity check codes.
arXiv Detail & Related papers (2021-03-30T18:02:55Z) - Round-robin differential phase-time-shifting protocol for quantum key
distribution: theory and experiment [58.03659958248968]
Quantum key distribution (QKD) allows the establishment of common cryptographic keys among distant parties.
Recently, a QKD protocol that circumvents the need for monitoring signal disturbance, has been proposed and demonstrated in initial experiments.
We derive the security proofs of the round-robin differential phase-time-shifting protocol in the collective attack scenario.
Our results show that the RRDPTS protocol can achieve higher secret key rate in comparison with the RRDPS, in the condition of high quantum bit error rate.
arXiv Detail & Related papers (2021-03-15T15:20:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.