Quantum-private distributed sensing
- URL: http://arxiv.org/abs/2410.00970v2
- Date: Tue, 29 Oct 2024 18:00:06 GMT
- Title: Quantum-private distributed sensing
- Authors: Joseph Ho, Jonathan W. Webb, Russell M. J. Brooks, Federico Grasselli, Erik Gauger, Alessandro Fedrizzi,
- Abstract summary: Quantum networks will provide unconditional security for communication, computation and distributed sensing tasks.
We report on an experimental demonstration of private parameter estimation, which allows a global phase to be evaluated without revealing the constituent local phase values.
This is achieved by sharing a Greenberger-Horne-Zeilinger (GHZ) state among three users who first verify the shared state before performing the sensing task.
- Score: 37.69303106863453
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum networks will provide unconditional security for communication, computation and distributed sensing tasks. We report on an experimental demonstration of private parameter estimation, which allows a global phase to be evaluated without revealing the constituent local phase values. This is achieved by sharing a Greenberger-Horne-Zeilinger (GHZ) state among three users who first verify the shared state before performing the sensing task. We implement the verification protocol, based on stabilizer measurements, and measure an average failure rate of 0.038(5) which we use to establish the security and privacy parameters. We validate the privacy conditions established by the protocol by evaluating the quantum Fisher information of the experimentally prepared GHZ states.
Related papers
- Error minimization for fidelity estimation of GHZ states with arbitrary noise [0.32634122554913997]
This work studies a scenario in which multiple nodes share noisy Greenberger-Horne-Zeilinger (GHZ) states.
Due to the collapsing nature of quantum measurements, the nodes randomly sample a subset of noisy GHZ states for measurement.
The proposed protocol achieves the minimum mean squared estimation error in a challenging scenario characterized by arbitrary noise.
arXiv Detail & Related papers (2024-08-18T09:02:17Z) - Private and Robust States for Distributed Quantum Sensing [1.2499537119440245]
Distributed quantum sensing enables the estimation of multiple parameters encoded in spatially separated probes.
In such settings it is natural to not want to give away more information than is necessary.
We use the concept of privacy with respect to a function, ensuring that only information about the target function is available to all the parties.
arXiv Detail & Related papers (2024-07-31T15:46:50Z) - Robust and efficient verification of graph states in blind
measurement-based quantum computation [52.70359447203418]
Blind quantum computation (BQC) is a secure quantum computation method that protects the privacy of clients.
It is crucial to verify whether the resource graph states are accurately prepared in the adversarial scenario.
Here, we propose a robust and efficient protocol for verifying arbitrary graph states with any prime local dimension.
arXiv Detail & Related papers (2023-05-18T06:24:45Z) - A Randomized Approach for Tight Privacy Accounting [63.67296945525791]
We propose a new differential privacy paradigm called estimate-verify-release (EVR)
EVR paradigm first estimates the privacy parameter of a mechanism, then verifies whether it meets this guarantee, and finally releases the query output.
Our empirical evaluation shows the newly proposed EVR paradigm improves the utility-privacy tradeoff for privacy-preserving machine learning.
arXiv Detail & Related papers (2023-04-17T00:38:01Z) - Conference key agreement in a quantum network [67.410870290301]
Quantum conference key agreement (QCKA) allows multiple users to establish a secure key from a shared multi-partite entangled state.
In a quantum network, this protocol can be efficiently implemented using a single copy of a N-qubit Greenberger-Horne-Zeilinger (GHZ) state to distil a secure N-user conference key bit.
arXiv Detail & Related papers (2022-07-04T18:00:07Z) - Demonstration of Entanglement-Enhanced Covert Sensing [3.516093069612194]
We present the theory and experiment for entanglement-enhanced covert sensing.
We show that entanglement offers a performance boost in estimating the imparted phase by a probed object.
Our work is expected to create ample opportunities for quantum information processing at unprecedented security and performance levels.
arXiv Detail & Related papers (2022-05-25T16:20:34Z) - Byzantine-Robust Federated Learning with Optimal Statistical Rates and
Privacy Guarantees [123.0401978870009]
We propose Byzantine-robust federated learning protocols with nearly optimal statistical rates.
We benchmark against competing protocols and show the empirical superiority of the proposed protocols.
Our protocols with bucketing can be naturally combined with privacy-guaranteeing procedures to introduce security against a semi-honest server.
arXiv Detail & Related papers (2022-05-24T04:03:07Z) - Performance analysis of continuous-variable quantum key distribution
using non-Gaussian states [0.0]
In this study, we analyze the efficiency of a protocol with discrete modulation of continuous variable non-Gaussian states.
We calculate the secure key generation rate against collective attacks using the fact that Eve's information can be bounded based on the protocol.
arXiv Detail & Related papers (2021-12-19T11:55:17Z) - Steering-based randomness certification with squeezed states and
homodyne measurements [0.0]
We present a scheme for quantum randomness certification based on quantum steering.
The protocol is one-sided device independent, providing high security, but requires only states and measurements that are simple to realise on quantum optics platforms.
arXiv Detail & Related papers (2021-11-11T13:05:18Z) - Round-robin differential phase-time-shifting protocol for quantum key
distribution: theory and experiment [58.03659958248968]
Quantum key distribution (QKD) allows the establishment of common cryptographic keys among distant parties.
Recently, a QKD protocol that circumvents the need for monitoring signal disturbance, has been proposed and demonstrated in initial experiments.
We derive the security proofs of the round-robin differential phase-time-shifting protocol in the collective attack scenario.
Our results show that the RRDPTS protocol can achieve higher secret key rate in comparison with the RRDPS, in the condition of high quantum bit error rate.
arXiv Detail & Related papers (2021-03-15T15:20:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.