PCKRF: Point Cloud Completion and Keypoint Refinement With Fusion Data for 6D Pose Estimation
- URL: http://arxiv.org/abs/2210.03437v3
- Date: Sat, 14 Sep 2024 16:16:43 GMT
- Title: PCKRF: Point Cloud Completion and Keypoint Refinement With Fusion Data for 6D Pose Estimation
- Authors: Yiheng Han, Irvin Haozhe Zhan, Long Zeng, Yu-Ping Wang, Ran Yi, Minjing Yu, Matthieu Gaetan Lin, Jenny Sheng, Yong-Jin Liu,
- Abstract summary: We propose Point Cloud Completion and Keypoint Refinement with Fusion Data (PCKRF), a new pose refinement pipeline for 6D pose estimation.
The PCKRF pipeline can be integrated with existing popular 6D pose estimation methods, such as the full flow bidirectional fusion network.
Our method exhibits superior stability compared to existing approaches when optimizing initial poses with relatively high precision.
- Score: 33.226033672697795
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Some robust point cloud registration approaches with controllable pose refinement magnitude, such as ICP and its variants, are commonly used to improve 6D pose estimation accuracy. However, the effectiveness of these methods gradually diminishes with the advancement of deep learning techniques and the enhancement of initial pose accuracy, primarily due to their lack of specific design for pose refinement. In this paper, we propose Point Cloud Completion and Keypoint Refinement with Fusion Data (PCKRF), a new pose refinement pipeline for 6D pose estimation. The pipeline consists of two steps. First, it completes the input point clouds via a novel pose-sensitive point completion network. The network uses both local and global features with pose information during point completion. Then, it registers the completed object point cloud with the corresponding target point cloud by our proposed Color supported Iterative KeyPoint (CIKP) method. The CIKP method introduces color information into registration and registers a point cloud around each keypoint to increase stability. The PCKRF pipeline can be integrated with existing popular 6D pose estimation methods, such as the full flow bidirectional fusion network, to further improve their pose estimation accuracy. Experiments demonstrate that our method exhibits superior stability compared to existing approaches when optimizing initial poses with relatively high precision. Notably, the results indicate that our method effectively complements most existing pose estimation techniques, leading to improved performance in most cases. Furthermore, our method achieves promising results even in challenging scenarios involving textureless and symmetrical objects. Our source code is available at https://github.com/zhanhz/KRF.
Related papers
- RBFIM: Perceptual Quality Assessment for Compressed Point Clouds Using Radial Basis Function Interpolation [58.04300937361664]
One of the main challenges in point cloud compression (PCC) is how to evaluate the perceived distortion so that the RB can be optimized for perceptual quality.
We propose a novel assessment method, utilizing radial basis function (RBF) to convert discrete point features into a continuous feature function for the distorted point cloud.
arXiv Detail & Related papers (2025-03-18T11:25:55Z) - Point Cloud Pre-training with Diffusion Models [62.12279263217138]
We propose a novel pre-training method called Point cloud Diffusion pre-training (PointDif)
PointDif achieves substantial improvement across various real-world datasets for diverse downstream tasks such as classification, segmentation and detection.
arXiv Detail & Related papers (2023-11-25T08:10:05Z) - Grad-PU: Arbitrary-Scale Point Cloud Upsampling via Gradient Descent
with Learned Distance Functions [77.32043242988738]
We propose a new framework for accurate point cloud upsampling that supports arbitrary upsampling rates.
Our method first interpolates the low-res point cloud according to a given upsampling rate.
arXiv Detail & Related papers (2023-04-24T06:36:35Z) - HybridFusion: LiDAR and Vision Cross-Source Point Cloud Fusion [15.94976936555104]
We propose a cross-source point cloud fusion algorithm called HybridFusion.
It can register cross-source dense point clouds from different viewing angle in outdoor large scenes.
The proposed approach is evaluated comprehensively through qualitative and quantitative experiments.
arXiv Detail & Related papers (2023-04-10T10:54:54Z) - RNNPose: Recurrent 6-DoF Object Pose Refinement with Robust
Correspondence Field Estimation and Pose Optimization [46.144194562841435]
We propose a framework based on a recurrent neural network (RNN) for object pose refinement.
The problem is formulated as a non-linear least squares problem based on the estimated correspondence field.
The correspondence field estimation and pose refinement are conducted alternatively in each iteration to recover accurate object poses.
arXiv Detail & Related papers (2022-03-24T06:24:55Z) - Rethinking Keypoint Representations: Modeling Keypoints and Poses as
Objects for Multi-Person Human Pose Estimation [79.78017059539526]
We propose a new heatmap-free keypoint estimation method in which individual keypoints and sets of spatially related keypoints (i.e., poses) are modeled as objects within a dense single-stage anchor-based detection framework.
In experiments, we observe that KAPAO is significantly faster and more accurate than previous methods, which suffer greatly from heatmap post-processing.
Our large model, KAPAO-L, achieves an AP of 70.6 on the Microsoft COCO Keypoints validation set without test-time augmentation.
arXiv Detail & Related papers (2021-11-16T15:36:44Z) - SO-Pose: Exploiting Self-Occlusion for Direct 6D Pose Estimation [98.83762558394345]
SO-Pose is a framework for regressing all 6 degrees-of-freedom (6DoF) for the object pose in a cluttered environment from a single RGB image.
We introduce a novel reasoning about self-occlusion, in order to establish a two-layer representation for 3D objects.
Cross-layer consistencies that align correspondences, self-occlusion and 6D pose, we can further improve accuracy and robustness.
arXiv Detail & Related papers (2021-08-18T19:49:29Z) - GDRNPP: A Geometry-guided and Fully Learning-based Object Pose Estimator [51.89441403642665]
6D pose estimation of rigid objects is a long-standing and challenging task in computer vision.
Recently, the emergence of deep learning reveals the potential of Convolutional Neural Networks (CNNs) to predict reliable 6D poses.
This paper introduces a fully learning-based object pose estimator.
arXiv Detail & Related papers (2021-02-24T09:11:31Z) - Spatial Attention Improves Iterative 6D Object Pose Estimation [52.365075652976735]
We propose a new method for 6D pose estimation refinement from RGB images.
Our main insight is that after the initial pose estimate, it is important to pay attention to distinct spatial features of the object.
We experimentally show that this approach learns to attend to salient spatial features and learns to ignore occluded parts of the object, leading to better pose estimation across datasets.
arXiv Detail & Related papers (2021-01-05T17:18:52Z) - Deep Bingham Networks: Dealing with Uncertainty and Ambiguity in Pose
Estimation [74.76155168705975]
Deep Bingham Networks (DBN) can handle pose-related uncertainties and ambiguities arising in almost all real life applications concerning 3D data.
DBN extends the state of the art direct pose regression networks by (i) a multi-hypotheses prediction head which can yield different distribution modes.
We propose new training strategies so as to avoid mode or posterior collapse during training and to improve numerical stability.
arXiv Detail & Related papers (2020-12-20T19:20:26Z) - PrimA6D: Rotational Primitive Reconstruction for Enhanced and Robust 6D
Pose Estimation [11.873744190924599]
We introduce a rotational primitive prediction based 6D object pose estimation using a single image as an input.
We leverage a Variational AutoEncoder (VAE) to learn this underlying primitive and its associated keypoints.
When evaluated over public datasets, our method yields a notable improvement over LINEMOD, Occlusion LINEMOD, and the Y-induced dataset.
arXiv Detail & Related papers (2020-06-14T03:55:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.