論文の概要: Label Propagation with Weak Supervision
- arxiv url: http://arxiv.org/abs/2210.03594v1
- Date: Fri, 7 Oct 2022 14:53:02 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-10 13:15:43.217116
- Title: Label Propagation with Weak Supervision
- Title(参考訳): 弱スーパービジョンによるラベル伝播
- Authors: Rattana Pukdee, Dylan Sam, Maria-Florina Balcan, Pradeep Ravikumar
- Abstract要約: 古典的ラベル伝搬アルゴリズム(LPA)の新しい解析法について紹介する(Zhu & Ghahramani, 2002)。
基礎となるグラフの局所的幾何学的性質と先行情報の品質の両方を利用する誤差境界を提供する。
提案手法は,従来の半教師付き手法と弱教師付き手法を改良した,弱教師付き分類タスクに応用できることを実証する。
- 参考スコア(独自算出の注目度): 47.52032178837098
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Semi-supervised learning and weakly supervised learning are important
paradigms that aim to reduce the growing demand for labeled data in current
machine learning applications. In this paper, we introduce a novel analysis of
the classical label propagation algorithm (LPA) (Zhu & Ghahramani, 2002) that
moreover takes advantage of useful prior information, specifically
probabilistic hypothesized labels on the unlabeled data. We provide an error
bound that exploits both the local geometric properties of the underlying graph
and the quality of the prior information. We also propose a framework to
incorporate multiple sources of noisy information. In particular, we consider
the setting of weak supervision, where our sources of information are weak
labelers. We demonstrate the ability of our approach on multiple benchmark
weakly supervised classification tasks, showing improvements upon existing
semi-supervised and weakly supervised methods.
- Abstract(参考訳): 半教師付き学習と弱い教師付き学習は、現在の機械学習アプリケーションにおけるラベル付きデータの需要増加を減らすことを目的とした重要なパラダイムである。
本稿では,従来のラベル伝搬アルゴリズム(LPA, Zhu & Ghahramani, 2002)の新たな解析手法を提案する。
基礎となるグラフの局所的幾何学的性質と先行情報の品質の両方を利用する誤差境界を提供する。
また,複数のノイズ情報ソースを組み込むフレームワークを提案する。
特に、情報ソースが弱いラベル付け者である弱監督の設定について検討する。
提案手法は,従来の半教師付き手法と弱教師付き手法を改良した,弱教師付き分類タスクに応用できることを示す。
関連論文リスト
- AutoWS: Automated Weak Supervision Framework for Text Classification [1.748907524043535]
本稿では、ドメインエキスパートへの依存を減らしつつ、弱い監督プロセスの効率を高めるための新しい枠組みを提案する。
本手法では,ラベルクラス毎にラベル付きサンプルの小さなセットが必要であり,多数のラベル付きデータにノイズ付きラベルを割り当てるラベル付き関数のセットを自動生成する。
論文 参考訳(メタデータ) (2023-02-07T07:12:05Z) - Losses over Labels: Weakly Supervised Learning via Direct Loss
Construction [71.11337906077483]
プログラム可能な弱い監視は、機械学習のパラダイムとして成長している。
ラベルの中間ステップを経由することなく,直接損失を発生させるため,ラベルのロバスト・オーバー・ラベル(Losses over Labels, LoL)を提案する。
いくつかのベンチマークテキストおよび画像分類タスクにおいて、LoLは既存の弱い監督手法を改善していることを示す。
論文 参考訳(メタデータ) (2022-12-13T22:29:14Z) - Label Noise-Resistant Mean Teaching for Weakly Supervised Fake News
Detection [93.6222609806278]
本稿では,弱い教師付き偽ニュース検出のためのラベル雑音耐性平均教育手法 (LNMT) を提案する。
LNMTは、未ラベルのニュースとユーザのフィードバックコメントを活用して、トレーニングデータの量を増やす。
LNMTはラベル伝搬とラベル信頼性推定を備えた平均教師フレームワークを確立する。
論文 参考訳(メタデータ) (2022-06-10T16:01:58Z) - Learning from Label Proportions by Learning with Label Noise [30.7933303912474]
ラベル比例(LLP)からの学習は、データポイントをバッグに分類する弱い教師付き分類問題である。
ラベル雑音による学習の低減に基づくLLPに対する理論的基礎的なアプローチを提案する。
このアプローチは、複数のデータセットやアーキテクチャにわたるディープラーニングシナリオにおける経験的パフォーマンスの向上を実証する。
論文 参考訳(メタデータ) (2022-03-04T18:52:21Z) - Data Consistency for Weakly Supervised Learning [15.365232702938677]
機械学習モデルのトレーニングには、大量の人間が注釈付けしたデータを使用する。
本稿では、雑音ラベル、すなわち弱い信号を処理する新しい弱監督アルゴリズムを提案する。
本研究では,テキストと画像の分類作業において,最先端の弱い監督手法を著しく上回っていることを示す。
論文 参考訳(メタデータ) (2022-02-08T16:48:19Z) - Learning to Detect Instance-level Salient Objects Using Complementary
Image Labels [55.049347205603304]
本報告では,本問題に対する第1の弱教師付きアプローチを提案する。
本稿では,候補対象の特定にクラス整合性情報を活用するSaliency Detection Branch,オブジェクト境界をデライン化するためにクラス整合性情報を利用するBundary Detection Branch,サブティナイズ情報を用いたCentroid Detection Branchを提案する。
論文 参考訳(メタデータ) (2021-11-19T10:15:22Z) - Self-Training with Weak Supervision [32.68342091430266]
最先端のディープニューラルネットワークには、多くのタスクで入手するのに高価な大規模なラベル付きトレーニングデータが必要です。
ドメイン固有のルールの形での弱い監視は、そのような設定で有用であることが示されている。
我々は、与えられたタスクに利用可能なすべてのデータを活用する弱い監視フレームワーク(ASTRA)を開発する。
論文 参考訳(メタデータ) (2021-04-12T14:45:04Z) - Disambiguation of weak supervision with exponential convergence rates [88.99819200562784]
教師付き学習では、データは不完全で差別的な情報で注釈付けされる。
本稿では,ある入力から潜在的な対象のセットが与えられる弱い監督の事例である部分的ラベリングに焦点を当てる。
弱い監督から完全な監督を回復する実証的曖昧化アルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-02-04T18:14:32Z) - Weakly-supervised Salient Instance Detection [65.0408760733005]
本報告では,本問題に対する第1の弱教師付きアプローチを提案する。
本稿では,候補対象の特定にクラス整合性情報を活用するSaliency Detection Branch,オブジェクト境界をデライン化するためにクラス整合性情報を利用するBundary Detection Branch,サブティナイズ情報を用いたCentroid Detection Branchを提案する。
論文 参考訳(メタデータ) (2020-09-29T09:47:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。