論文の概要: Bi-directional Weakly Supervised Knowledge Distillation for Whole Slide
Image Classification
- arxiv url: http://arxiv.org/abs/2210.03664v2
- Date: Mon, 10 Oct 2022 10:13:06 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-11 17:01:13.124743
- Title: Bi-directional Weakly Supervised Knowledge Distillation for Whole Slide
Image Classification
- Title(参考訳): 全スライド画像分類のための双方向弱補正知識蒸留法
- Authors: Linhao Qu, Xiaoyuan Luo, Manning Wang, Zhijian Song
- Abstract要約: 本稿では,WSI分類のための弱監督型知識蒸留フレームワーク(WENO)を提案する。
本稿では,WSI分類のための弱教師付き知識蒸留フレームワークWENOを提案する。
- 参考スコア(独自算出の注目度): 9.43604501642743
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Computer-aided pathology diagnosis based on the classification of Whole Slide
Image (WSI) plays an important role in clinical practice, and it is often
formulated as a weakly-supervised Multiple Instance Learning (MIL) problem.
Existing methods solve this problem from either a bag classification or an
instance classification perspective. In this paper, we propose an end-to-end
weakly supervised knowledge distillation framework (WENO) for WSI
classification, which integrates a bag classifier and an instance classifier in
a knowledge distillation framework to mutually improve the performance of both
classifiers. Specifically, an attention-based bag classifier is used as the
teacher network, which is trained with weak bag labels, and an instance
classifier is used as the student network, which is trained using the
normalized attention scores obtained from the teacher network as soft pseudo
labels for the instances in positive bags. An instance feature extractor is
shared between the teacher and the student to further enhance the knowledge
exchange between them. In addition, we propose a hard positive instance mining
strategy based on the output of the student network to force the teacher
network to keep mining hard positive instances. WENO is a plug-and-play
framework that can be easily applied to any existing attention-based bag
classification methods. Extensive experiments on five datasets demonstrate the
efficiency of WENO. Code is available at https://github.com/miccaiif/WENO.
- Abstract(参考訳): 臨床実践においてWSI(Whole Slide Image)の分類に基づくコンピュータ支援型病理診断が重要であり,MIL(Multiple Instance Learning)問題として定式化されることも多い。
既存の方法は、バッグ分類またはインスタンス分類の観点からこの問題を解決する。
本稿では,WSI分類のためのエンド・ツー・エンドの弱教師付き知識蒸留フレームワーク(WENO)を提案する。このフレームワークは,バッグ分類器とインスタンス分類器を統合し,双方の分類器の性能を相互に向上する。
具体的には、弱袋ラベルで訓練された教師ネットワークとして注目ベースのバッグ分類器を用い、正袋のインスタンスのソフト擬似ラベルとして教師ネットワークから得られた正規化された注目スコアを用いて訓練された学生ネットワークとしてインスタンス分類器を用いる。
インスタンス特徴抽出器を教師と生徒とで共有し、それら間の知識交換をさらに強化する。
また,生徒ネットワークの出力に基づいて,教師ネットワークに積極的にマイニングを継続させる強硬なインスタンスマイニング戦略を提案する。
WENOは、既存のアテンションベースのバッグ分類手法に容易に適用できるプラグイン・アンド・プレイフレームワークである。
5つのデータセットに関する広範な実験は、wenoの効率を示している。
コードはhttps://github.com/miccaiif/wenoで入手できる。
関連論文リスト
- Auxiliary Tasks Enhanced Dual-affinity Learning for Weakly Supervised
Semantic Segmentation [79.05949524349005]
AuxSegNet+は、サリエンシマップから豊富な情報を探索する弱教師付き補助学習フレームワークである。
また,サリエンシとセグメンテーションの特徴マップから画素レベルの親和性を学習するためのクロスタスク親和性学習機構を提案する。
論文 参考訳(メタデータ) (2024-03-02T10:03:21Z) - Rethinking Multiple Instance Learning for Whole Slide Image
Classification: A Bag-Level Classifier is a Good Instance-Level Teacher [22.080213609228547]
複数のインスタンス学習は、WSI(Whole Slide Image)分類において約束されている。
既存の手法は一般に2段階のアプローチを採用しており、学習不可能な特徴埋め込み段階と分類器訓練段階からなる。
バッグレベルの分類器は、良いインスタンスレベルの教師になれると提案する。
論文 参考訳(メタデータ) (2023-12-02T10:16:03Z) - Rethinking Multiple Instance Learning for Whole Slide Image Classification: A Good Instance Classifier is All You Need [18.832471712088353]
MIL設定下では,インスタンスレベルの弱教師付きコントラスト学習アルゴリズムを初めて提案する。
また,プロトタイプ学習による正確な擬似ラベル生成手法を提案する。
論文 参考訳(メタデータ) (2023-07-05T12:44:52Z) - Learning to Detect Instance-level Salient Objects Using Complementary
Image Labels [55.049347205603304]
本報告では,本問題に対する第1の弱教師付きアプローチを提案する。
本稿では,候補対象の特定にクラス整合性情報を活用するSaliency Detection Branch,オブジェクト境界をデライン化するためにクラス整合性情報を利用するBundary Detection Branch,サブティナイズ情報を用いたCentroid Detection Branchを提案する。
論文 参考訳(メタデータ) (2021-11-19T10:15:22Z) - Fast learning from label proportions with small bags [0.0]
ラベルパーセンテージ(LLP)から学ぶ場合、インスタンスはバッグにグループ化され、トレーニングバッグの相対クラスパーセンテージが与えられたインスタンス分類器を学習する。
本研究では,全ての一貫したラベルの組み合わせを明示的に考慮し,より効率的なアルゴリズムを設計できる小袋の事例に焦点を当てる。
論文 参考訳(メタデータ) (2021-10-07T13:11:18Z) - Visual Transformer for Task-aware Active Learning [49.903358393660724]
プールベースのアクティブラーニングのための新しいパイプラインを提案する。
提案手法は,学習中に使用可能なアンラベリング例を利用して,ラベル付き例との相関関係を推定する。
ビジュアルトランスフォーマーは、ラベル付き例と非ラベル付き例の間の非ローカルビジュアル概念依存性をモデル化する。
論文 参考訳(メタデータ) (2021-06-07T17:13:59Z) - GAN for Vision, KG for Relation: a Two-stage Deep Network for Zero-shot
Action Recognition [33.23662792742078]
ゼロショット動作認識のための2段階のディープニューラルネットワークを提案する。
サンプリング段階では,授業の動作特徴と単語ベクトルによって訓練されたGAN(Generative Adversarial Network)を利用する。
分類段階において、アクションクラスの単語ベクトルと関連するオブジェクトの関係に基づいて知識グラフを構築する。
論文 参考訳(メタデータ) (2021-05-25T09:34:42Z) - Dynamic Semantic Matching and Aggregation Network for Few-shot Intent
Detection [69.2370349274216]
利用可能な注釈付き発話が不足しているため、インテント検出は困難である。
セマンティック成分はマルチヘッド自己認識によって発話から蒸留される。
本手法はラベル付きインスタンスとラベルなしインスタンスの両方の表現を強化するための総合的なマッチング手段を提供する。
論文 参考訳(メタデータ) (2020-10-06T05:16:38Z) - Weakly-supervised Salient Instance Detection [65.0408760733005]
本報告では,本問題に対する第1の弱教師付きアプローチを提案する。
本稿では,候補対象の特定にクラス整合性情報を活用するSaliency Detection Branch,オブジェクト境界をデライン化するためにクラス整合性情報を利用するBundary Detection Branch,サブティナイズ情報を用いたCentroid Detection Branchを提案する。
論文 参考訳(メタデータ) (2020-09-29T09:47:23Z) - Region Comparison Network for Interpretable Few-shot Image
Classification [97.97902360117368]
新しいクラスのモデルをトレーニングするために、ラベル付きサンプルの限られた数だけを効果的に活用するための画像分類が提案されている。
本研究では,領域比較ネットワーク (RCN) と呼ばれる距離学習に基づく手法を提案する。
また,タスクのレベルからカテゴリへの解釈可能性の一般化も提案する。
論文 参考訳(メタデータ) (2020-09-08T07:29:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。