論文の概要: Large Language Models can Implement Policy Iteration
- arxiv url: http://arxiv.org/abs/2210.03821v2
- Date: Sun, 13 Aug 2023 18:27:52 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-15 23:17:14.117326
- Title: Large Language Models can Implement Policy Iteration
- Title(参考訳): 大規模言語モデルはポリシーイテレーションを実装できる
- Authors: Ethan Brooks, Logan Walls, Richard L. Lewis, Satinder Singh
- Abstract要約: In-Context Policy Iterationは、基礎モデルを用いてReinforcement Learning(RL)を実行するアルゴリズムである。
ICPIは、専門家によるデモンストレーションやグラデーションなしでRLタスクを実行することを学ぶ。
ICPIは、RL環境との試行錯誤によってポリシーを導出するプロンプトの内容を反復的に更新する。
- 参考スコア(独自算出の注目度): 18.424558160071808
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This work presents In-Context Policy Iteration, an algorithm for performing
Reinforcement Learning (RL), in-context, using foundation models. While the
application of foundation models to RL has received considerable attention,
most approaches rely on either (1) the curation of expert demonstrations
(either through manual design or task-specific pretraining) or (2) adaptation
to the task of interest using gradient methods (either fine-tuning or training
of adapter layers). Both of these techniques have drawbacks. Collecting
demonstrations is labor-intensive, and algorithms that rely on them do not
outperform the experts from which the demonstrations were derived. All gradient
techniques are inherently slow, sacrificing the "few-shot" quality that made
in-context learning attractive to begin with. In this work, we present an
algorithm, ICPI, that learns to perform RL tasks without expert demonstrations
or gradients. Instead we present a policy-iteration method in which the prompt
content is the entire locus of learning. ICPI iteratively updates the contents
of the prompt from which it derives its policy through trial-and-error
interaction with an RL environment. In order to eliminate the role of
in-weights learning (on which approaches like Decision Transformer rely
heavily), we demonstrate our algorithm using Codex, a language model with no
prior knowledge of the domains on which we evaluate it.
- Abstract(参考訳): 本研究は,基盤モデルを用いて強化学習(rl)を行うアルゴリズムであるin-context policy iterationを提案する。
基礎モデルのRLへの適用は注目されているが、ほとんどのアプローチは、(1)手動設計またはタスク固有の事前訓練による)専門家によるデモンストレーションのキュレーション、または(2)勾配法(アダプタ層の微調整や訓練)によるタスクへの適応のいずれかに依存している。
これらの技法には欠点がある。
デモの収集は労働集約的であり、それに依存するアルゴリズムは、デモが導かれた専門家を上回らない。
すべてのグラデーションテクニックは本質的に遅いので、コンテキスト内学習を最初から魅力的なものにする“ファウショット”品質を犠牲にします。
本研究では、専門家による実証や勾配を伴わずにRLタスクの実行を学習するアルゴリズムICPIを提案する。
代わりに、プロンプトコンテンツが学習の軌跡全体であるポリシー・イテレーション手法を提案する。
ICPIは、RL環境との試行錯誤によってポリシーを導出するプロンプトの内容を反復的に更新する。
重み付き学習(決定変換器のようなアプローチが強く依存する)の役割を解消するために、我々はCodexという言語モデルを用いてアルゴリズムを実証した。
関連論文リスト
- Learning Task Representations from In-Context Learning [73.72066284711462]
大規模言語モデル(LLM)は、文脈内学習において顕著な習熟性を示している。
ICLプロンプトにおけるタスク情報をアテンションヘッドの関数として符号化するための自動定式化を導入する。
提案手法の有効性は,最後の隠れ状態の分布と最適に実行されたテキスト内学習モデルとの整合性に起因していることを示す。
論文 参考訳(メタデータ) (2025-02-08T00:16:44Z) - Vintix: Action Model via In-Context Reinforcement Learning [72.65703565352769]
In-context reinforcement learning を通じて振る舞いを学習できる固定されたクロスドメインモデルを導入することで ICRL のスケールアップに向けた第一歩を提示する。
ICRLを促進するために設計されたフレームワークであるアルゴリズム蒸留は、多目的な作用モデルを構築するために、専門家蒸留に代わる魅力的な、競争力のある代替手段を提供することを示した。
論文 参考訳(メタデータ) (2025-01-31T18:57:08Z) - Online inductive learning from answer sets for efficient reinforcement learning exploration [52.03682298194168]
エージェントポリシーの近似を説明可能な近似を表す論理規則の集合を学習するために,帰納的な解集合プログラムの学習を利用する。
次に、学習ルールに基づいて回答セット推論を行い、次のバッチで学習エージェントの探索をガイドします。
本手法は,初回トレーニングにおいても,エージェントが達成した割引リターンを著しく向上させる。
論文 参考訳(メタデータ) (2025-01-13T16:13:22Z) - Q-SFT: Q-Learning for Language Models via Supervised Fine-Tuning [62.984693936073974]
価値に基づく強化学習は、幅広いマルチターン問題に対する効果的なポリシーを学ぶことができる。
現在の値ベースのRL法は、特に大規模な言語モデルの設定にスケールすることが困難であることが証明されている。
本稿では,これらの欠点に対処する新しいオフラインRLアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-11-07T21:36:52Z) - Inapplicable Actions Learning for Knowledge Transfer in Reinforcement
Learning [3.194414753332705]
学習不能な動作はRLアルゴリズムのサンプル効率を大幅に向上させることを示す。
得られた知識の伝達性のおかげで、学習プロセスをより効率的にするために、他のタスクやドメインで再利用することができる。
論文 参考訳(メタデータ) (2022-11-28T17:45:39Z) - Task Phasing: Automated Curriculum Learning from Demonstrations [46.1680279122598]
報酬ドメインを疎結合にするために強化学習を適用することは、ガイド信号が不十分なため、非常に難しい。
本稿では,実演を用いてカリキュラムのシーケンスを自動的に生成する手法を提案する。
3つのスパース報酬領域に対する実験結果から,我々のタスク・ファスリング・アプローチは,パフォーマンスに関して最先端のアプローチよりも優れていることが示された。
論文 参考訳(メタデータ) (2022-10-20T03:59:11Z) - Jump-Start Reinforcement Learning [68.82380421479675]
本稿では、オフラインデータやデモ、あるいは既存のポリシーを使ってRLポリシーを初期化するメタアルゴリズムを提案する。
特に,タスク解決に2つのポリシーを利用するアルゴリズムであるJump-Start Reinforcement Learning (JSRL)を提案する。
実験により、JSRLは既存の模倣と強化学習アルゴリズムを大幅に上回っていることを示す。
論文 参考訳(メタデータ) (2022-04-05T17:25:22Z) - Text Generation with Efficient (Soft) Q-Learning [91.47743595382758]
強化学習(RL)は、任意のタスクメトリクスを報酬としてプラグインすることで、より柔軟なソリューションを提供する。
ソフトQ-ラーニングの観点からテキスト生成のための新しいRL式を導入する。
雑音/負の例から学習し、敵攻撃、即時生成など、幅広いタスクにアプローチを適用する。
論文 参考訳(メタデータ) (2021-06-14T18:48:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。