Learning the Network of Graphs for Graph Neural Networks
- URL: http://arxiv.org/abs/2210.03907v1
- Date: Sat, 8 Oct 2022 04:08:51 GMT
- Title: Learning the Network of Graphs for Graph Neural Networks
- Authors: Yixiang Shan, Jielong Yang, Xing Liu, Yixing Gao, Hechang Chen and
Shuzhi Sam Ge
- Abstract summary: Graph neural networks (GNNs) have achieved great success in many scenarios with graph-structured data.
There are three issues when applying GNNs: graphs are unknown, nodes have noisy features, and graphs contain noisy connections.
We propose a new graph neural network named as GL-GNN to solve these problems.
- Score: 13.607220832670434
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph neural networks (GNNs) have achieved great success in many scenarios
with graph-structured data. However, in many real applications, there are three
issues when applying GNNs: graphs are unknown, nodes have noisy features, and
graphs contain noisy connections. Aiming at solving these problems, we propose
a new graph neural network named as GL-GNN. Our model includes multiple
sub-modules, each sub-module selects important data features and learn the
corresponding key relation graph of data samples when graphs are unknown.
GL-GNN further obtains the network of graphs by learning the network of
sub-modules. The learned graphs are further fused using an aggregation method
over the network of graphs. Our model solves the first issue by simultaneously
learning multiple relation graphs of data samples as well as a relation network
of graphs, and solves the second and the third issue by selecting important
data features as well as important data sample relations. We compare our method
with 14 baseline methods on seven datasets when the graph is unknown and 11
baseline methods on two datasets when the graph is known. The results show that
our method achieves better accuracies than the baseline methods and is capable
of selecting important features and graph edges from the dataset. Our code will
be publicly available at \url{https://github.com/Looomo/GL-GNN}.
Related papers
- Spectral Greedy Coresets for Graph Neural Networks [61.24300262316091]
The ubiquity of large-scale graphs in node-classification tasks hinders the real-world applications of Graph Neural Networks (GNNs)
This paper studies graph coresets for GNNs and avoids the interdependence issue by selecting ego-graphs based on their spectral embeddings.
Our spectral greedy graph coreset (SGGC) scales to graphs with millions of nodes, obviates the need for model pre-training, and applies to low-homophily graphs.
arXiv Detail & Related papers (2024-05-27T17:52:12Z) - A Robust Stacking Framework for Training Deep Graph Models with
Multifaceted Node Features [61.92791503017341]
Graph Neural Networks (GNNs) with numerical node features and graph structure as inputs have demonstrated superior performance on various supervised learning tasks with graph data.
The best models for such data types in most standard supervised learning settings with IID (non-graph) data are not easily incorporated into a GNN.
Here we propose a robust stacking framework that fuses graph-aware propagation with arbitrary models intended for IID data.
arXiv Detail & Related papers (2022-06-16T22:46:33Z) - Automatic Relation-aware Graph Network Proliferation [182.30735195376792]
We propose Automatic Relation-aware Graph Network Proliferation (ARGNP) for efficiently searching GNNs.
These operations can extract hierarchical node/relational information and provide anisotropic guidance for message passing on a graph.
Experiments on six datasets for four graph learning tasks demonstrate that GNNs produced by our method are superior to the current state-of-the-art hand-crafted and search-based GNNs.
arXiv Detail & Related papers (2022-05-31T10:38:04Z) - Graph-level Neural Networks: Current Progress and Future Directions [61.08696673768116]
Graph-level Neural Networks (GLNNs, deep learning-based graph-level learning methods) have been attractive due to their superiority in modeling high-dimensional data.
We propose a systematic taxonomy covering GLNNs upon deep neural networks, graph neural networks, and graph pooling.
arXiv Detail & Related papers (2022-05-31T06:16:55Z) - KGNN: Harnessing Kernel-based Networks for Semi-supervised Graph
Classification [13.419578861488226]
We propose a Kernel-based Graph Neural Network (KGNN) for semi-supervised graph classification.
We show that KGNN achieves impressive performance over competitive baselines.
arXiv Detail & Related papers (2022-05-21T10:03:46Z) - Neural Graph Matching for Pre-training Graph Neural Networks [72.32801428070749]
Graph neural networks (GNNs) have been shown powerful capacity at modeling structural data.
We present a novel Graph Matching based GNN Pre-Training framework, called GMPT.
The proposed method can be applied to fully self-supervised pre-training and coarse-grained supervised pre-training.
arXiv Detail & Related papers (2022-03-03T09:53:53Z) - GraphTheta: A Distributed Graph Neural Network Learning System With
Flexible Training Strategy [5.466414428765544]
We present a new distributed graph learning system GraphTheta.
It supports multiple training strategies and enables efficient and scalable learning on big graphs.
This work represents the largest edge-attributed GNN learning task conducted on a billion-scale network in the literature.
arXiv Detail & Related papers (2021-04-21T14:51:33Z) - Scalable Graph Neural Networks for Heterogeneous Graphs [12.44278942365518]
Graph neural networks (GNNs) are a popular class of parametric model for learning over graph-structured data.
Recent work has argued that GNNs primarily use the graph for feature smoothing, and have shown competitive results on benchmark tasks.
In this work, we ask whether these results can be extended to heterogeneous graphs, which encode multiple types of relationship between different entities.
arXiv Detail & Related papers (2020-11-19T06:03:35Z) - Lifelong Graph Learning [6.282881904019272]
We bridge graph learning and lifelong learning by converting a continual graph learning problem to a regular graph learning problem.
We show that feature graph networks (FGN) achieve superior performance in two applications, i.e., lifelong human action recognition with wearable devices and feature matching.
arXiv Detail & Related papers (2020-09-01T18:21:34Z) - Graphs, Convolutions, and Neural Networks: From Graph Filters to Graph
Neural Networks [183.97265247061847]
We leverage graph signal processing to characterize the representation space of graph neural networks (GNNs)
We discuss the role of graph convolutional filters in GNNs and show that any architecture built with such filters has the fundamental properties of permutation equivariance and stability to changes in the topology.
We also study the use of GNNs in recommender systems and learning decentralized controllers for robot swarms.
arXiv Detail & Related papers (2020-03-08T13:02:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.