論文の概要: Kernel-based Substructure Exploration for Next POI Recommendation
- arxiv url: http://arxiv.org/abs/2210.03969v1
- Date: Sat, 8 Oct 2022 08:36:34 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-11 15:51:08.838980
- Title: Kernel-based Substructure Exploration for Next POI Recommendation
- Title(参考訳): カーネルによる次世代POI勧告のためのサブ構造探査
- Authors: Wei Ju, Yifang Qin, Ziyue Qiao, Xiao Luo, Yifan Wang, Yanjie Fu, Ming
Zhang
- Abstract要約: POI(Point-of-Interest)レコメンデーションは、レコメンデーションシステムにおいてますます重要な役割を果たす。
既存のほとんどの手法は、リカレントニューラルネットワーク(RNN)を利用して、レコメンデーションのためのシーケンシャルな影響を探索する。
地理的および逐次的影響の両特性を組み合わせた,次回のPOIレコメンデーションのための Kernel-based Graph Neural Network (KBGNN) を提案する。
- 参考スコア(独自算出の注目度): 20.799741790823425
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Point-of-Interest (POI) recommendation, which benefits from the proliferation
of GPS-enabled devices and location-based social networks (LBSNs), plays an
increasingly important role in recommender systems. It aims to provide users
with the convenience to discover their interested places to visit based on
previous visits and current status. Most existing methods usually merely
leverage recurrent neural networks (RNNs) to explore sequential influences for
recommendation. Despite the effectiveness, these methods not only neglect
topological geographical influences among POIs, but also fail to model
high-order sequential substructures. To tackle the above issues, we propose a
Kernel-Based Graph Neural Network (KBGNN) for next POI recommendation, which
combines the characteristics of both geographical and sequential influences in
a collaborative way. KBGNN consists of a geographical module and a sequential
module. On the one hand, we construct a geographical graph and leverage a
message passing neural network to capture the topological geographical
influences. On the other hand, we explore high-order sequential substructures
in the user-aware sequential graph using a graph kernel neural network to
capture user preferences. Finally, a consistency learning framework is
introduced to jointly incorporate geographical and sequential information
extracted from two separate graphs. In this way, the two modules effectively
exchange knowledge to mutually enhance each other. Extensive experiments
conducted on two real-world LBSN datasets demonstrate the superior performance
of our proposed method over the state-of-the-arts. Our codes are available at
https://github.com/Fang6ang/KBGNN.
- Abstract(参考訳): GPS対応デバイスと位置情報ベースのソーシャルネットワーク(LBSN)の普及の恩恵を受けるPOI勧告は、レコメンダシステムにおいてますます重要な役割を果たす。
利用者に、過去の訪問状況や現在の状況に基づいて、興味のある訪問先を見つけるための便利な機能を提供することを目指している。
既存のほとんどの手法は、リカレントニューラルネットワーク(RNN)を利用して、レコメンデーションのためのシーケンシャルな影響を探索する。
有効性にもかかわらず、これらの手法は、POI間の位相的地理的影響を無視するだけでなく、高次逐次サブストラクチャのモデル化にも失敗する。
上記の課題に対処するために,地理的および逐次的影響の両特性を協調的に組み合わせた,次のPOIレコメンデーションのためのカーネルベースグラフニューラルネットワーク(KBGNN)を提案する。
KBGNNは地理的モジュールと逐次モジュールで構成される。
一方、地理的グラフを構築し、メッセージパッシングニューラルネットワークを活用して、地形的地理的影響を捉える。
一方,グラフカーネルニューラルネットワークを用いて,ユーザの嗜好を捉えるために,ユーザが認識するシーケンシャルグラフの高次シーケンシャルな部分構造を探索する。
最後に、2つの別々のグラフから抽出された地理情報と順序情報を統合するために、一貫性学習フレームワークを導入する。
このように、2つのモジュールは相互に強化するために知識を効果的に交換する。
2つの実世界のLBSNデータセットに対して行われた大規模な実験は、提案手法が最先端技術よりも優れた性能を示した。
私たちのコードはhttps://github.com/fang6ang/kbgnnで利用可能です。
関連論文リスト
- Bi-Level Graph Structure Learning for Next POI Recommendation [28.44264733067864]
Next Point-of-interest(POI)推奨は、シーケンシャルなチェックイン履歴と一連のPOI候補に基づいて、ユーザの次の目的地を予測することを目的としている。
本稿では,新しい2段階グラフ構造学習(BiGSL)を提案する。
論文 参考訳(メタデータ) (2024-11-02T07:40:16Z) - SpaGBOL: Spatial-Graph-Based Orientated Localisation [15.324623975476348]
都市域内のクロスビューなジオローカライゼーションは、現在のデータセットや技術に空間的構造が欠如していることから、部分的には困難である。
本稿では,局所的な観測のシーケンスをモデル化するためのグラフ表現の利用と,対象位置の接続性を提案する。
論文 参考訳(メタデータ) (2024-09-23T20:04:29Z) - Self-supervised Graph-based Point-of-interest Recommendation [66.58064122520747]
Next Point-of-Interest (POI)レコメンデーションは、ロケーションベースのeコマースにおいて重要なコンポーネントとなっている。
自己教師付きグラフ強化POIレコメンデーション(S2GRec)を次のPOIレコメンデーションのために提案する。
特に,グローバル・トランジション・グラフと局所軌道グラフの両方からの協調的な信号を組み込むために,グラフ強化セルフアテンテート・レイヤを考案した。
論文 参考訳(メタデータ) (2022-10-22T17:29:34Z) - Node2Seq: Towards Trainable Convolutions in Graph Neural Networks [59.378148590027735]
今回提案するグラフネットワーク層であるNode2Seqは,隣接ノードの重みを明示的に調整可能なノード埋め込みを学習する。
対象ノードに対して,当手法は注意メカニズムを介して隣接ノードをソートし,さらに1D畳み込みニューラルネットワーク(CNN)を用いて情報集約のための明示的な重み付けを行う。
また, 特徴学習のための非局所的情報を, 注意スコアに基づいて適応的に組み込むことを提案する。
論文 参考訳(メタデータ) (2021-01-06T03:05:37Z) - Data-Driven Learning of Geometric Scattering Networks [74.3283600072357]
最近提案された幾何散乱変換の緩和に基づく新しいグラフニューラルネットワーク(GNN)モジュールを提案する。
我々の学習可能な幾何散乱(LEGS)モジュールは、ウェーブレットの適応的なチューニングを可能にし、学習された表現に帯域通過の特徴が現れるように促す。
論文 参考訳(メタデータ) (2020-10-06T01:20:27Z) - Multi-Level Graph Convolutional Network with Automatic Graph Learning
for Hyperspectral Image Classification [63.56018768401328]
HSI分類のための自動グラフ学習法(MGCN-AGL)を用いたマルチレベルグラフ畳み込みネットワーク(GCN)を提案する。
空間的に隣接する領域における重要度を特徴付けるために注意機構を利用することで、最も関連性の高い情報を適応的に組み込んで意思決定を行うことができる。
MGCN-AGLは局所的に生成した表現表現に基づいて画像領域間の長距離依存性を符号化する。
論文 参考訳(メタデータ) (2020-09-19T09:26:20Z) - RGCF: Refined Graph Convolution Collaborative Filtering with concise and
expressive embedding [42.46797662323393]
我々はRefined Graph Convolution Collaborative Filtering(RGCF)というGCNベースの新しい協調フィルタリングモデルを開発した。
RGCFはグラフ内の暗黙の高次連結性を捉えることができ、結果として得られるベクトル表現はより表現力が高い。
我々は3つの公開百万規模のデータセットに対して広範な実験を行い、我々のRGCFが最先端のモデルを大幅に上回っていることを実証した。
論文 参考訳(メタデータ) (2020-07-07T12:26:10Z) - AM-GCN: Adaptive Multi-channel Graph Convolutional Networks [85.0332394224503]
グラフ畳み込みネットワーク(GCN)は,豊富な情報を持つ複雑なグラフにおいて,ノードの特徴と位相構造を最適に統合できるかどうかを検討する。
半教師付き分類(AM-GCN)のための適応型マルチチャネルグラフ畳み込みネットワークを提案する。
実験の結果,AM-GCNはノードの特徴とトポロジ的構造の両方から最も相関性の高い情報を抽出することがわかった。
論文 参考訳(メタデータ) (2020-07-05T08:16:03Z) - Policy-GNN: Aggregation Optimization for Graph Neural Networks [60.50932472042379]
グラフニューラルネットワーク(GNN)は、局所的なグラフ構造をモデル化し、隣人からの情報を集約することで階層的なパターンを捉えることを目的としている。
複雑なグラフとスパースな特徴を与えられた各ノードに対して効果的なアグリゲーション戦略を開発することは難しい課題である。
本稿では,GNNのサンプリング手順とメッセージパッシングを複合学習プロセスにモデル化するメタ政治フレームワークであるPolicy-GNNを提案する。
論文 参考訳(メタデータ) (2020-06-26T17:03:06Z) - An Uncoupled Training Architecture for Large Graph Learning [20.784230322205232]
グラフデータをグリッドライクなデータに埋め込むための、柔軟なアンカップリングトレーニングフレームワークであるNode2Gridsを紹介します。
各ノードの影響を次々にランク付けすることで、Node2Gridsは最も影響力のある1階と、中央ノードの融合情報を持つ2階の隣人を選択する。
下流タスクの効率をさらに向上するために、単純なCNNベースのニューラルネットワークを使用して、マッピングされたグリッドのようなデータから重要な情報をキャプチャする。
論文 参考訳(メタデータ) (2020-03-21T11:49:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。