論文の概要: SpaGBOL: Spatial-Graph-Based Orientated Localisation
- arxiv url: http://arxiv.org/abs/2409.15514v1
- Date: Mon, 23 Sep 2024 20:04:29 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-26 12:47:38.696735
- Title: SpaGBOL: Spatial-Graph-Based Orientated Localisation
- Title(参考訳): SpaGBOL: 空間グラフに基づく指向的ローカライゼーション
- Authors: Tavis Shore, Oscar Mendez, Simon Hadfield,
- Abstract要約: 都市域内のクロスビューなジオローカライゼーションは、現在のデータセットや技術に空間的構造が欠如していることから、部分的には困難である。
本稿では,局所的な観測のシーケンスをモデル化するためのグラフ表現の利用と,対象位置の接続性を提案する。
- 参考スコア(独自算出の注目度): 15.324623975476348
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Cross-View Geo-Localisation within urban regions is challenging in part due to the lack of geo-spatial structuring within current datasets and techniques. We propose utilising graph representations to model sequences of local observations and the connectivity of the target location. Modelling as a graph enables generating previously unseen sequences by sampling with new parameter configurations. To leverage this newly available information, we propose a GNN-based architecture, producing spatially strong embeddings and improving discriminability over isolated image embeddings. We outline SpaGBOL, introducing three novel contributions. 1) The first graph-structured dataset for Cross-View Geo-Localisation, containing multiple streetview images per node to improve generalisation. 2) Introducing GNNs to the problem, we develop the first system that exploits the correlation between node proximity and feature similarity. 3) Leveraging the unique properties of the graph representation - we demonstrate a novel retrieval filtering approach based on neighbourhood bearings. SpaGBOL achieves state-of-the-art accuracies on the unseen test graph - with relative Top-1 retrieval improvements on previous techniques of 11%, and 50% when filtering with Bearing Vector Matching on the SpaGBOL dataset.
- Abstract(参考訳): 都市域内のクロスビューなジオローカライゼーションは、現在のデータセットや技術に空間的構造が欠如していることから、部分的には困難である。
本稿では,局所的な観測のシーケンスをモデル化するためのグラフ表現の利用と,対象位置の接続性を提案する。
グラフとしてのモデリングにより、新しいパラメータ設定でサンプリングすることで、これまで見つからなかったシーケンスを生成することができる。
新たに利用可能な情報を活用するために,空間的に強い埋め込みを生成し,孤立した画像埋め込みに対する識別性を向上するGNNアーキテクチャを提案する。
SpaGBOLは3つの新しいコントリビューションを紹介します。
1)クロスビュージオローカライゼーションのための最初のグラフ構造化データセット。
2)問題にGNNを導入し,ノード近接性と特徴類似度との相関性を利用した最初のシステムを開発した。
3) グラフ表現のユニークな特性を活用する - 周辺軸受に基づく新しい検索フィルタリング手法を実証する。
SpaGBOLは、SpaGBOLデータセットのベアリングベクトルマッチングによるフィルタリングにおいて、従来手法の11%と50%の相対的なTop-1検索の改善により、未確認のテストグラフ上で最先端の精度を実現している。
関連論文リスト
- A Pure Transformer Pretraining Framework on Text-attributed Graphs [50.833130854272774]
グラフ構造を先行として扱うことで,特徴中心の事前学習の視点を導入する。
我々のフレームワークであるGraph Sequence Pretraining with Transformer (GSPT)はランダムウォークを通してノードコンテキストをサンプリングする。
GSPTはノード分類とリンク予測の両方に容易に適応でき、様々なデータセットで有望な経験的成功を示す。
論文 参考訳(メタデータ) (2024-06-19T22:30:08Z) - Graph Transformer GANs with Graph Masked Modeling for Architectural
Layout Generation [153.92387500677023]
本稿では,グラフノード関係を効果的に学習するために,GTGAN(Graph Transformer Generative Adversarial Network)を提案する。
提案したグラフ変換器エンコーダは、局所的およびグローバルな相互作用をモデル化するために、Transformer内のグラフ畳み込みと自己アテンションを組み合わせる。
また,グラフ表現学習のための自己指導型事前学習手法を提案する。
論文 参考訳(メタデータ) (2024-01-15T14:36:38Z) - EGRC-Net: Embedding-induced Graph Refinement Clustering Network [66.44293190793294]
埋め込みによるグラフリファインメントクラスタリングネットワーク (EGRC-Net) という新しいグラフクラスタリングネットワークを提案する。
EGRC-Netは学習した埋め込みを利用して初期グラフを適応的に洗練し、クラスタリング性能を向上させる。
提案手法はいくつかの最先端手法より一貫して優れている。
論文 参考訳(メタデータ) (2022-11-19T09:08:43Z) - Spatial-Spectral Clustering with Anchor Graph for Hyperspectral Image [88.60285937702304]
本稿では、HSIデータクラスタリングのための空間スペクトルクラスタリングとアンカーグラフ(SSCAG)という新しい非監視アプローチを提案する。
提案されたSSCAGは最先端のアプローチと競合する。
論文 参考訳(メタデータ) (2021-04-24T08:09:27Z) - Spatial-spectral Hyperspectral Image Classification via Multiple Random
Anchor Graphs Ensemble Learning [88.60285937702304]
本稿では,複数のランダムアンカーグラフアンサンブル学習(RAGE)を用いた空間スペクトルHSI分類手法を提案する。
まず、各選択されたバンドのより記述的な特徴を抽出し、局所的な構造と領域の微妙な変化を保存するローカルバイナリパターンを採用する。
次に,アンカーグラフの構成に適応隣接代入を導入し,計算複雑性を低減した。
論文 参考訳(メタデータ) (2021-03-25T09:31:41Z) - Pseudoinverse Graph Convolutional Networks: Fast Filters Tailored for
Large Eigengaps of Dense Graphs and Hypergraphs [0.0]
Graph Convolutional Networks (GCNs) は、グラフベースのデータセットで半教師付き分類を行うツールとして成功している。
本稿では,三部フィルタ空間が高密度グラフを対象とする新しいGCN変種を提案する。
論文 参考訳(メタデータ) (2020-08-03T08:48:41Z) - GPS-Net: Graph Property Sensing Network for Scene Graph Generation [91.60326359082408]
シーングラフ生成(SGG)は、画像内のオブジェクトとそれらのペア関係を検出することを目的としている。
GPS-Netは、エッジ方向情報、ノード間の優先度の差、長期にわたる関係の分布という、SGGの3つの特性を網羅している。
GPS-Netは、VG、OI、VRDの3つの一般的なデータベース上での最先端のパフォーマンスを、さまざまな設定とメトリクスで大幅に向上させる。
論文 参考訳(メタデータ) (2020-03-29T07:22:31Z) - Geom-GCN: Geometric Graph Convolutional Networks [15.783571061254847]
本稿では,この2つの弱点を克服するために,グラフニューラルネットワークのための新しい幾何集約手法を提案する。
提案したアグリゲーションスキームは置換不変であり、ノード埋め込み、構造近傍、二レベルアグリゲーションという3つのモジュールから構成される。
また,このスキームをGeom-GCNと呼ばれるグラフ畳み込みネットワークに実装し,グラフ上でトランスダクティブ学習を行う。
論文 参考訳(メタデータ) (2020-02-13T00:03:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。