Kernel-based Substructure Exploration for Next POI Recommendation
- URL: http://arxiv.org/abs/2210.03969v1
- Date: Sat, 8 Oct 2022 08:36:34 GMT
- Title: Kernel-based Substructure Exploration for Next POI Recommendation
- Authors: Wei Ju, Yifang Qin, Ziyue Qiao, Xiao Luo, Yifan Wang, Yanjie Fu, Ming
Zhang
- Abstract summary: Point-of-Interest (POI) recommendation plays an increasingly important role in recommender systems.
Most existing methods usually merely leverage recurrent neural networks (RNNs) to explore sequential influences for recommendation.
We propose a Kernel-Based Graph Neural Network (KBGNN) for next POI recommendation, which combines the characteristics of both geographical and sequential influences.
- Score: 20.799741790823425
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Point-of-Interest (POI) recommendation, which benefits from the proliferation
of GPS-enabled devices and location-based social networks (LBSNs), plays an
increasingly important role in recommender systems. It aims to provide users
with the convenience to discover their interested places to visit based on
previous visits and current status. Most existing methods usually merely
leverage recurrent neural networks (RNNs) to explore sequential influences for
recommendation. Despite the effectiveness, these methods not only neglect
topological geographical influences among POIs, but also fail to model
high-order sequential substructures. To tackle the above issues, we propose a
Kernel-Based Graph Neural Network (KBGNN) for next POI recommendation, which
combines the characteristics of both geographical and sequential influences in
a collaborative way. KBGNN consists of a geographical module and a sequential
module. On the one hand, we construct a geographical graph and leverage a
message passing neural network to capture the topological geographical
influences. On the other hand, we explore high-order sequential substructures
in the user-aware sequential graph using a graph kernel neural network to
capture user preferences. Finally, a consistency learning framework is
introduced to jointly incorporate geographical and sequential information
extracted from two separate graphs. In this way, the two modules effectively
exchange knowledge to mutually enhance each other. Extensive experiments
conducted on two real-world LBSN datasets demonstrate the superior performance
of our proposed method over the state-of-the-arts. Our codes are available at
https://github.com/Fang6ang/KBGNN.
Related papers
- Bi-Level Graph Structure Learning for Next POI Recommendation [28.44264733067864]
Next point-of-interest (POI) recommendation aims to predict a user's next destination based on sequential check-in history and a set of POI candidates.
This paper presents a novel Bi-level Graph Structure Learning (BiGSL) for next POI recommendation.
arXiv Detail & Related papers (2024-11-02T07:40:16Z) - SpaGBOL: Spatial-Graph-Based Orientated Localisation [15.324623975476348]
Cross-View Geo-Localisation within urban regions is challenging in part due to the lack of geo-spatial structuring within current datasets and techniques.
We propose utilising graph representations to model sequences of local observations and the connectivity of the target location.
arXiv Detail & Related papers (2024-09-23T20:04:29Z) - Self-supervised Graph-based Point-of-interest Recommendation [66.58064122520747]
Next Point-of-Interest (POI) recommendation has become a prominent component in location-based e-commerce.
We propose a Self-supervised Graph-enhanced POI Recommender (S2GRec) for next POI recommendation.
In particular, we devise a novel Graph-enhanced Self-attentive layer to incorporate the collaborative signals from both global transition graph and local trajectory graphs.
arXiv Detail & Related papers (2022-10-22T17:29:34Z) - Node2Seq: Towards Trainable Convolutions in Graph Neural Networks [59.378148590027735]
We propose a graph network layer, known as Node2Seq, to learn node embeddings with explicitly trainable weights for different neighboring nodes.
For a target node, our method sorts its neighboring nodes via attention mechanism and then employs 1D convolutional neural networks (CNNs) to enable explicit weights for information aggregation.
In addition, we propose to incorporate non-local information for feature learning in an adaptive manner based on the attention scores.
arXiv Detail & Related papers (2021-01-06T03:05:37Z) - Data-Driven Learning of Geometric Scattering Networks [74.3283600072357]
We propose a new graph neural network (GNN) module based on relaxations of recently proposed geometric scattering transforms.
Our learnable geometric scattering (LEGS) module enables adaptive tuning of the wavelets to encourage band-pass features to emerge in learned representations.
arXiv Detail & Related papers (2020-10-06T01:20:27Z) - Multi-Level Graph Convolutional Network with Automatic Graph Learning
for Hyperspectral Image Classification [63.56018768401328]
We propose a Multi-level Graph Convolutional Network (GCN) with Automatic Graph Learning method (MGCN-AGL) for HSI classification.
By employing attention mechanism to characterize the importance among spatially neighboring regions, the most relevant information can be adaptively incorporated to make decisions.
Our MGCN-AGL encodes the long range dependencies among image regions based on the expressive representations that have been produced at local level.
arXiv Detail & Related papers (2020-09-19T09:26:20Z) - RGCF: Refined Graph Convolution Collaborative Filtering with concise and
expressive embedding [42.46797662323393]
We develop a new GCN-based Collaborative Filtering model, named Refined Graph convolution Collaborative Filtering(RGCF)
RGCF is more capable for capturing the implicit high-order connectivities inside the graph and the resultant vector representations are more expressive.
We conduct extensive experiments on three public million-size datasets, demonstrating that our RGCF significantly outperforms state-of-the-art models.
arXiv Detail & Related papers (2020-07-07T12:26:10Z) - AM-GCN: Adaptive Multi-channel Graph Convolutional Networks [85.0332394224503]
We study whether Graph Convolutional Networks (GCNs) can optimally integrate node features and topological structures in a complex graph with rich information.
We propose an adaptive multi-channel graph convolutional networks for semi-supervised classification (AM-GCN)
Our experiments show that AM-GCN extracts the most correlated information from both node features and topological structures substantially.
arXiv Detail & Related papers (2020-07-05T08:16:03Z) - Policy-GNN: Aggregation Optimization for Graph Neural Networks [60.50932472042379]
Graph neural networks (GNNs) aim to model the local graph structures and capture the hierarchical patterns by aggregating the information from neighbors.
It is a challenging task to develop an effective aggregation strategy for each node, given complex graphs and sparse features.
We propose Policy-GNN, a meta-policy framework that models the sampling procedure and message passing of GNNs into a combined learning process.
arXiv Detail & Related papers (2020-06-26T17:03:06Z) - An Uncoupled Training Architecture for Large Graph Learning [20.784230322205232]
We present Node2Grids, a flexible uncoupled training framework for embedding graph data into grid-like data.
By ranking each node's influence through degree, Node2Grids selects the most influential first-order as well as second-order neighbors with central node fusion information.
For further improving the efficiency of downstream tasks, a simple CNN-based neural network is employed to capture the significant information from the mapped grid-like data.
arXiv Detail & Related papers (2020-03-21T11:49:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.