Behavior Importance-Aware Graph Neural Architecture Search for Cross-Domain Recommendation
- URL: http://arxiv.org/abs/2504.07102v1
- Date: Tue, 11 Mar 2025 04:30:18 GMT
- Title: Behavior Importance-Aware Graph Neural Architecture Search for Cross-Domain Recommendation
- Authors: Chendi Ge, Xin Wang, Ziwei Zhang, Yijian Qin, Hong Chen, Haiyang Wu, Yang Zhang, Yuekui Yang, Wenwu Zhu,
- Abstract summary: Cross-domain recommendation (CDR) mitigates data sparsity and cold-start issues in recommendation systems.<n>Recent CDR approaches using graph neural networks (GNNs) capture complex user-item interactions.<n>BiGNAS is a framework that jointly optimize GNN architecture and data importance for CDR.
- Score: 49.03831702224862
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Cross-domain recommendation (CDR) mitigates data sparsity and cold-start issues in recommendation systems. While recent CDR approaches using graph neural networks (GNNs) capture complex user-item interactions, they rely on manually designed architectures that are often suboptimal and labor-intensive. Additionally, extracting valuable behavioral information from source domains to improve target domain recommendations remains challenging. To address these challenges, we propose Behavior importance-aware Graph Neural Architecture Search (BiGNAS), a framework that jointly optimizes GNN architecture and data importance for CDR. BiGNAS introduces two key components: a Cross-Domain Customized Supernetwork and a Graph-Based Behavior Importance Perceptron. The supernetwork, as a one-shot, retrain-free module, automatically searches the optimal GNN architecture for each domain without the need for retraining. The perceptron uses auxiliary learning to dynamically assess the importance of source domain behaviors, thereby improving target domain recommendations. Extensive experiments on benchmark CDR datasets and a large-scale industry advertising dataset demonstrate that BiGNAS consistently outperforms state-of-the-art baselines. To the best of our knowledge, this is the first work to jointly optimize GNN architecture and behavior data importance for cross-domain recommendation.
Related papers
- RelGNN: Composite Message Passing for Relational Deep Learning [56.48834369525997]
We introduce RelGNN, a novel GNN framework specifically designed to capture the unique characteristics of relational databases.<n>At the core of our approach is the introduction of atomic routes, which are sequences of nodes forming high-order tripartite structures.<n>RelGNN consistently achieves state-of-the-art accuracy with up to 25% improvement.
arXiv Detail & Related papers (2025-02-10T18:58:40Z) - Domain Adaptive Unfolded Graph Neural Networks [6.675805308519987]
Graph neural networks (GNNs) have made significant progress in numerous graph machine learning tasks.
In this work, we consider how to facilitate graph domain adaptation (GDA) with architectural enhancement.
We propose a simple yet effective strategy called cascaded propagation (CP) which is guaranteed to decrease the lower-level objective value.
arXiv Detail & Related papers (2024-11-20T09:05:36Z) - Heterogeneous Graph-based Framework with Disentangled Representations Learning for Multi-target Cross Domain Recommendation [7.247438542823219]
CDR (Cross-Domain Recommendation) is a critical solution to data sparsity problem in recommendation system.
We present HGDR (Heterogeneous Graph-based Framework with Disentangled Representations Learning), an end-to-end heterogeneous network architecture.
Experiments on real-world datasets and online A/B tests prove that our proposed model can transmit information among domains effectively.
arXiv Detail & Related papers (2024-07-01T02:27:54Z) - DNS-Rec: Data-aware Neural Architecture Search for Recommender Systems [79.76519917171261]
This paper addresses the computational overhead and resource inefficiency prevalent in Sequential Recommender Systems (SRSs)<n>We introduce an innovative approach combining pruning methods with advanced model designs.<n>Our principal contribution is the development of a Data-aware Neural Architecture Search for Recommender System (DNS-Rec)
arXiv Detail & Related papers (2024-02-01T07:22:52Z) - Towards Lightweight Cross-domain Sequential Recommendation via External
Attention-enhanced Graph Convolution Network [7.1102362215550725]
Cross-domain Sequential Recommendation (CSR) depicts the evolution of behavior patterns for overlapped users by modeling their interactions from multiple domains.
We introduce a lightweight external attention-enhanced GCN-based framework to solve the above challenges, namely LEA-GCN.
To further alleviate the framework structure and aggregate the user-specific sequential pattern, we devise a novel dual-channel External Attention (EA) component.
arXiv Detail & Related papers (2023-02-07T03:06:29Z) - DDGHM: Dual Dynamic Graph with Hybrid Metric Training for Cross-Domain
Sequential Recommendation [15.366783212837515]
Sequential Recommendation (SR) characterizes evolving patterns of user behaviors by modeling how users transit among items.
To solve this problem, we focus on Cross-Domain Sequential Recommendation (CDSR)
We propose DDGHM, a novel framework for the CDSR problem, which includes two main modules, dual dynamic graph modeling and hybrid metric training.
arXiv Detail & Related papers (2022-09-21T07:53:06Z) - Pre-training Graph Neural Network for Cross Domain Recommendation [58.057687253631826]
A recommender system predicts users' potential interests in items, where the core is to learn user/item embeddings.
Inspired by the contemporary arts in pre-training from graph representation learning, we propose a pre-training and fine-tuning diagram for cross-domain recommendation.
We devise a novel Pre-training Graph Neural Network for Cross-Domain Recommendation (PCRec), which adopts the contrastive self-supervised pre-training of a graph encoder.
arXiv Detail & Related papers (2021-11-16T07:34:42Z) - Edge-featured Graph Neural Architecture Search [131.4361207769865]
We propose Edge-featured Graph Neural Architecture Search to find the optimal GNN architecture.
Specifically, we design rich entity and edge updating operations to learn high-order representations.
We show EGNAS can search better GNNs with higher performance than current state-of-the-art human-designed and searched-based GNNs.
arXiv Detail & Related papers (2021-09-03T07:53:18Z) - A Deep Framework for Cross-Domain and Cross-System Recommendations [18.97641276417075]
Cross-Domain Recommendation (CDR) and Cross-System Recommendations (CSR) are promising solutions to address the data sparsity problem in recommender systems.
We propose a Deep framework for both Cross-Domain and Cross-System Recommendations, called DCDCSR, based on Matrix Factorization (MF) models and a fully connected Deep Neural Network (DNN)
arXiv Detail & Related papers (2020-09-14T06:11:17Z) - Supervised Domain Adaptation using Graph Embedding [86.3361797111839]
Domain adaptation methods assume that distributions between the two domains are shifted and attempt to realign them.
We propose a generic framework based on graph embedding.
We show that the proposed approach leads to a powerful Domain Adaptation framework.
arXiv Detail & Related papers (2020-03-09T12:25:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.