Generalization of the Einstein coefficients and rate equations under the
quantum Rabi oscillation
- URL: http://arxiv.org/abs/2210.04032v1
- Date: Sat, 8 Oct 2022 14:13:04 GMT
- Title: Generalization of the Einstein coefficients and rate equations under the
quantum Rabi oscillation
- Authors: Najirul Islam and Shyamal Biswas
- Abstract summary: We have generalized Einstein coefficients and rate equations from quantum field theoretic point of view.
We have analytically obtained multimode Jaynes-Cummings model results for the quantum Rabi oscillations of a two-level system.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We have generalized Einstein coefficients and rate equations from quantum
field theoretic point of view by bringing the fundamental processes and the
quantum Rabi oscillation in a single footing for the light-matter interactions
for nonzero Rabi frequency. We have analytically obtained multimode
Jaynes-Cummings model results for the quantum Rabi oscillations of a two-level
system in a lossy resonant cavity containing (i) thermal photons and (ii)
injected photons of a coherent field. We have renormalized the coupling
constant for the light-matter interactions for these cases. Our results match
well with the seminal experimental data obtained in this regard by Brune et al
[Phys. Rev. Lett 76, 1800 (1996)]. We also have studied the population dynamics
in this regard by applying the generalized Einstein rate equations.
Related papers
- Quantum interferences and gates with emitter-based coherent photon sources [0.0]
In 2019, it was shown that the emitted single photon states often include coherence with the vacuum component.
We show how such photon-number coherence alters quantum interference experiments.
We illustrate the impact on quantum protocols by evidencing modifications in heralding efficiency and fidelity of two-qubit gates.
arXiv Detail & Related papers (2024-01-02T12:29:49Z) - Amplification of quantum transfer and quantum ratchet [56.47577824219207]
We study a model of amplification of quantum transfer and making it directed which we call the quantum ratchet model.
The ratchet effect is achieved in the quantum control model with dissipation and sink, where the Hamiltonian depends on vibrations in the energy difference synchronized with transitions between energy levels.
Amplitude and frequency of the oscillating vibron together with the dephasing rate are the parameters of the quantum ratchet which determine its efficiency.
arXiv Detail & Related papers (2023-12-31T14:04:43Z) - Probing many-body correlations using quantum-cascade correlation
spectroscopy [0.0]
The radiative quantum cascade, i.e. the consecutive emission of photons from a ladder of energy levels, is of fundamental importance in quantum optics.
Here, we use exciton polaritons to explore the cascaded emission of photons in the regime where individual transitions of the ladder are not resolved.
Remarkably, the measured photon-photon correlations exhibit a strong dependence on the polariton energy, and therefore on the underlying polaritonic interaction strength.
arXiv Detail & Related papers (2022-12-18T09:51:12Z) - Entanglement of annihilation photons [141.5628276096321]
We present the results of a new experimental study of the quantum entanglement of photon pairs produced in positron-electron annihilation at rest.
Despite numerous measurements, there is still no experimental proof of the entanglement of photons.
arXiv Detail & Related papers (2022-10-14T08:21:55Z) - Tunable photon-mediated interactions between spin-1 systems [68.8204255655161]
We show how to harness multi-level emitters with several optical transitions to engineer photon-mediated interactions between effective spin-1 systems.
Our results expand the quantum simulation toolbox available in cavity QED and quantum nanophotonic setups.
arXiv Detail & Related papers (2022-06-03T14:52:34Z) - Correlated steady states and Raman lasing in continuously pumped and
probed atomic ensembles [68.8204255655161]
We consider an ensemble of Alkali atoms that are continuously optically pumped and probed.
Due to the collective scattering of photons at large optical depth, the steady state of atoms does not correspond to an uncorrelated tensor-product state.
We find and characterize regimes of Raman lasing, akin to the model of a superradiant laser.
arXiv Detail & Related papers (2022-05-10T06:54:54Z) - Exploring quantum correlations in a hybrid optomechanical system [0.0]
We propose a scheme of two coupled optomechanical cavities to enhance the intracavity entanglement.
Photon hopping is employed to establish couplings between optical modes, while phonon is utilized to establish couplings between mechanical tunneling resonators.
arXiv Detail & Related papers (2022-04-16T08:47:50Z) - A fast, high-order numerical method for the simulation of
single-excitation states in quantum optics [0.0]
We reformulate the problem as an integro-differential equation for the atomic degrees of freedom, and describe an efficient solver for the case of a Gaussian atomic density.
We demonstrate the solver on two systems of physical interest: in the first, an initially-excited atom decays into a photon by spontaneous emission, and in the second, a photon pulse is used to excite an atom, which then decays.
arXiv Detail & Related papers (2021-09-14T20:25:32Z) - Observations of near-perfect nonclassical correlation using coherent
light [12.507208769851653]
We show the physics of anticorrelation on a beam splitter using sub-Poisson distributed coherent photons.
A particular phase relation between paired photons is unveiled for anticorrelation, satisfying the complementarity theory of quantum mechanics.
arXiv Detail & Related papers (2021-05-05T04:27:51Z) - Waveguide quantum electrodynamics: collective radiance and photon-photon
correlations [151.77380156599398]
Quantum electrodynamics deals with the interaction of photons propagating in a waveguide with localized quantum emitters.
We focus on guided photons and ordered arrays, leading to super- and sub-radiant states, bound photon states and quantum correlations with promising quantum information applications.
arXiv Detail & Related papers (2021-03-11T17:49:52Z) - Light-matter interactions near photonic Weyl points [68.8204255655161]
Weyl photons appear when two three-dimensional photonic bands with linear dispersion are degenerated at a single momentum point, labeled as Weyl point.
We analyze the dynamics of a single quantum emitter coupled to a Weyl photonic bath as a function of its detuning with respect to the Weyl point.
arXiv Detail & Related papers (2020-12-23T18:51:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.