[Dissertation] Fundamental Limits to Single-Photon Detection
- URL: http://arxiv.org/abs/2210.04089v1
- Date: Sat, 8 Oct 2022 19:02:54 GMT
- Title: [Dissertation] Fundamental Limits to Single-Photon Detection
- Authors: Tzula B. Propp
- Abstract summary: We build a fully quantum mechanical and sufficiently realistic model that includes all stages of the photodetection process.
We accomplish this within the framework of quantum information theory using the language of positive operator valued measures (POVMs)
This dissertation contains material previously published in three papers: Propp, Tz. B & van Enk, S. J.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum mechanics cements the intimate relationship between the nature of
light and its detection. Historically, quantum theories of photodetection have
generally fallen into two categories: the first tries to determine what quantum
field observable is measured when photoelectrons are detected, laying the
theoretical groundwork for photodetection being possible. The second type are
phenomenological theories, which take great care to model the details of
specific photodetectors. In this dissertation, we fill in the gap between these
two models in the modern literature on photodetection by constructing a fully
quantum mechanical and sufficiently realistic model that includes all stages of
the photodetection process: transmission, amplification, and a final classical
measurement. We accomplish this within the framework of quantum information
theory using the language of positive operator valued measures (POVMs).
This dissertation contains material previously published in three papers:
Propp, Tz. B & van Enk, S. J. (2019). On nonlinear amplification: improved
quantum limits for photon counting. Optics Express 27, 16, 23454-23463.
Propp, Tz. B & van Enk, S. J. (2019). Quantum networks for single photon
detection. Physical Review A, 100, 033836.
Propp, Tz. B & van Enk, S. J. (2020). How to project onto an arbitrary
single-photon wavepacket. Physical Review A, 102, 053707.
Related papers
- Deterministic and reconfigurable graph state generation with a single solid-state quantum emitter [0.0]
We demonstrate deterministic and reconfigurable graph state generation with optical solid-state integrated quantum emitters.
We perform quantum state tomography of two successive photons, measuring Bell state fidelities up to 0.80$pm$0.04 and concurrences up to 0.69$pm$0.09.
This simple optical scheme, compatible with commercially available quantum dot-based single photon sources, brings us a step closer to fault-tolerant quantum computing with spins and photons.
arXiv Detail & Related papers (2024-10-30T23:59:54Z) - Multichromatic Quantum Superpositions in Entangled Two-Photon Absorption
Spectroscopy [0.0]
This work considers an alternative way of correlating photons by including energy superpositions.
We study how the multichromatic quantum superposition, or color superposition of photon-pair states, influences the optical properties of organic chromophores.
arXiv Detail & Related papers (2023-03-01T15:16:39Z) - QUICK$^3$ -- Design of a satellite-based quantum light source for
quantum communication and extended physical theory tests in space [73.86330563258117]
Single photon source can enhance secure data rates in satellite-based quantum key distribution scenarios.
payload is being integrated into a 3U CubeSat and scheduled for launch in 2024 into low Earth orbit.
arXiv Detail & Related papers (2023-01-26T15:34:11Z) - Integrated Quantum Optical Phase Sensor [48.7576911714538]
We present a photonic integrated circuit fabricated in thin-film lithium niobate.
We use the second-order nonlinearity to produce a squeezed state at the same frequency as the pump light and realize circuit control and sensing with electro-optics.
We anticipate that on-chip photonic systems like this, which operate with low power and integrate all of the needed functionality on a single die, will open new opportunities for quantum optical sensing.
arXiv Detail & Related papers (2022-12-19T18:46:33Z) - Tunable photon-mediated interactions between spin-1 systems [68.8204255655161]
We show how to harness multi-level emitters with several optical transitions to engineer photon-mediated interactions between effective spin-1 systems.
Our results expand the quantum simulation toolbox available in cavity QED and quantum nanophotonic setups.
arXiv Detail & Related papers (2022-06-03T14:52:34Z) - Quantum density matrix theory for a laser without adiabatic elimination
of the population inversion: transition to lasing in the class-B limit [62.997667081978825]
No class-B quantum density-matrix model is available to date, capable of accurately describing coherence and photon correlations within a unified theory.
Here we carry out a density-matrix theoretical approach for generic class-B lasers, and provide closed equations for the photonic and atomic reduced density matrix in the Fock basis of photons.
This model enables the study of few-photon bifurcations and non-classical photon correlations in class-B laser devices, also leveraging quantum descriptions of coherently coupled nanolaser arrays.
arXiv Detail & Related papers (2022-05-26T16:33:51Z) - Ultra-long photonic quantum walks via spin-orbit metasurfaces [52.77024349608834]
We report ultra-long photonic quantum walks across several hundred optical modes, obtained by propagating a light beam through very few closely-stacked liquid-crystal metasurfaces.
With this setup we engineer quantum walks up to 320 discrete steps, far beyond state-of-the-art experiments.
arXiv Detail & Related papers (2022-03-28T19:37:08Z) - Photon-mediated Stroboscopic Quantum Simulation of a $\mathbb{Z}_{2}$
Lattice Gauge Theory [58.720142291102135]
Quantum simulation of lattice gauge theories (LGTs) aims at tackling non-perturbative particle and condensed matter physics.
One of the current challenges is to go beyond 1+1 dimensions, where four-body (plaquette) interactions, not contained naturally in quantum simulating devices, appear.
We show how to prepare the ground state and measure Wilson loops using state-of-the-art techniques in atomic physics.
arXiv Detail & Related papers (2021-07-27T18:10:08Z) - Quantum Interference of Identical Photons from Remote GaAs Quantum Dots [0.45507178426690204]
Photonic quantum technology provides a viable route to quantum communication, quantum simulation, and quantum information processing.
Recent progress has seen the realisation of boson sampling using 20 single-photons and quantum key distribution over hundreds of kilometres.
For applications, a significant roadblock is the poor quantum coherence upon interfering single photons created by independent quantum dots.
Here, we demonstrate two-photon interference with near-unity visibility ($93.0pm0.8$)% using photons from two completely separate GaAs quantum dots.
arXiv Detail & Related papers (2021-06-07T18:00:03Z) - Scalable multiphoton quantum metrology with neither pre- nor
post-selected measurements [0.0]
We experimentally demonstrate a scalable protocol for quantum-enhanced optical phase estimation.
The robustness of two-mode squeezed vacuum states against loss allows us to outperform schemes based on N00N states.
Our work is important for quantum technologies that rely on multiphoton interference.
arXiv Detail & Related papers (2020-11-04T18:11:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.