PropertyDAG: Multi-objective Bayesian optimization of partially ordered,
mixed-variable properties for biological sequence design
- URL: http://arxiv.org/abs/2210.04096v1
- Date: Sat, 8 Oct 2022 19:42:16 GMT
- Title: PropertyDAG: Multi-objective Bayesian optimization of partially ordered,
mixed-variable properties for biological sequence design
- Authors: Ji Won Park, Samuel Stanton, Saeed Saremi, Andrew Watkins, Henri
Dwyer, Vladimir Gligorijevic, Richard Bonneau, Stephen Ra and Kyunghyun Cho
- Abstract summary: We present PropertyDAG, a framework that operates on top of the traditional multi-objective BO to impose this desired ordering on the objectives.
We demonstrate its performance over multiple simulated active learning iterations on a penicillin production task, toy numerical problem, and a real-world antibody design task.
- Score: 42.92794039060737
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Bayesian optimization offers a sample-efficient framework for navigating the
exploration-exploitation trade-off in the vast design space of biological
sequences. Whereas it is possible to optimize the various properties of
interest jointly using a multi-objective acquisition function, such as the
expected hypervolume improvement (EHVI), this approach does not account for
objectives with a hierarchical dependency structure. We consider a common use
case where some regions of the Pareto frontier are prioritized over others
according to a specified $\textit{partial ordering}$ in the objectives. For
instance, when designing antibodies, we would like to maximize the binding
affinity to a target antigen only if it can be expressed in live cell culture
-- modeling the experimental dependency in which affinity can only be measured
for antibodies that can be expressed and thus produced in viable quantities. In
general, we may want to confer a partial ordering to the properties such that
each property is optimized conditioned on its parent properties satisfying some
feasibility condition. To this end, we present PropertyDAG, a framework that
operates on top of the traditional multi-objective BO to impose this desired
ordering on the objectives, e.g. expression $\rightarrow$ affinity. We
demonstrate its performance over multiple simulated active learning iterations
on a penicillin production task, toy numerical problem, and a real-world
antibody design task.
Related papers
- DecompOpt: Controllable and Decomposed Diffusion Models for Structure-based Molecular Optimization [49.85944390503957]
DecompOpt is a structure-based molecular optimization method based on a controllable and diffusion model.
We show that DecompOpt can efficiently generate molecules with improved properties than strong de novo baselines.
arXiv Detail & Related papers (2024-03-07T02:53:40Z) - Towards Interpreting Multi-Objective Feature Associations [5.794844059546945]
We propose an objective specific feature interaction using multi-labels to find the optimal combination of features in agricultural settings.
Results indicate that explanation-based approaches are capable of identifying combinations of features that reduce pathogen presence in fewer than a baseline.
arXiv Detail & Related papers (2024-02-28T02:24:04Z) - BOtied: Multi-objective Bayesian optimization with tied multivariate ranks [33.414682601242006]
In this paper, we show a natural connection between non-dominated solutions and the extreme quantile of the joint cumulative distribution function.
Motivated by this link, we propose the Pareto-compliant CDF indicator and the associated acquisition function, BOtied.
Our experiments on a variety of synthetic and real-world problems demonstrate that BOtied outperforms state-of-the-art MOBO acquisition functions.
arXiv Detail & Related papers (2023-06-01T04:50:06Z) - Multi-Objective GFlowNets [59.16787189214784]
We study the problem of generating diverse candidates in the context of Multi-Objective Optimization.
In many applications of machine learning such as drug discovery and material design, the goal is to generate candidates which simultaneously optimize a set of potentially conflicting objectives.
We propose Multi-Objective GFlowNets (MOGFNs), a novel method for generating diverse optimal solutions, based on GFlowNets.
arXiv Detail & Related papers (2022-10-23T16:15:36Z) - A Pareto-optimal compositional energy-based model for sampling and
optimization of protein sequences [55.25331349436895]
Deep generative models have emerged as a popular machine learning-based approach for inverse problems in the life sciences.
These problems often require sampling new designs that satisfy multiple properties of interest in addition to learning the data distribution.
arXiv Detail & Related papers (2022-10-19T19:04:45Z) - Designing Biological Sequences via Meta-Reinforcement Learning and
Bayesian Optimization [68.28697120944116]
We train an autoregressive generative model via Meta-Reinforcement Learning to propose promising sequences for selection.
We pose this problem as that of finding an optimal policy over a distribution of MDPs induced by sampling subsets of the data.
Our in-silico experiments show that meta-learning over such ensembles provides robustness against reward misspecification and achieves competitive results.
arXiv Detail & Related papers (2022-09-13T18:37:27Z) - A General Recipe for Likelihood-free Bayesian Optimization [115.82591413062546]
We propose likelihood-free BO (LFBO) to extend BO to a broader class of models and utilities.
LFBO directly models the acquisition function without having to separately perform inference with a probabilistic surrogate model.
We show that computing the acquisition function in LFBO can be reduced to optimizing a weighted classification problem.
arXiv Detail & Related papers (2022-06-27T03:55:27Z) - R-MBO: A Multi-surrogate Approach for Preference Incorporation in
Multi-objective Bayesian Optimisation [0.0]
We present an a-priori multi-surrogate approach to incorporate the desirable objective function values as the preferences of a decision-maker in multi-objective BO.
The results and comparison with the existing mono-surrogate approach on benchmark and real-world optimisation problems show the potential of the proposed approach.
arXiv Detail & Related papers (2022-04-27T19:58:26Z) - Empirical Study on the Benefits of Multiobjectivization for Solving
Single-Objective Problems [0.0]
Local optima are often preventing algorithms from making progress and thus pose a severe threat.
With the use of a sophisticated visualization technique based on the multi-objective gradients, the properties of the arising multi-objective landscapes are illustrated and examined.
We will empirically show that the multi-objective COCO MOGSA is able to exploit these properties to overcome local traps.
arXiv Detail & Related papers (2020-06-25T14:04:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.