Multi-Objective GFlowNets
- URL: http://arxiv.org/abs/2210.12765v2
- Date: Mon, 17 Jul 2023 21:18:06 GMT
- Title: Multi-Objective GFlowNets
- Authors: Moksh Jain, Sharath Chandra Raparthy, Alex Hernandez-Garcia, Jarrid
Rector-Brooks, Yoshua Bengio, Santiago Miret, Emmanuel Bengio
- Abstract summary: We study the problem of generating diverse candidates in the context of Multi-Objective Optimization.
In many applications of machine learning such as drug discovery and material design, the goal is to generate candidates which simultaneously optimize a set of potentially conflicting objectives.
We propose Multi-Objective GFlowNets (MOGFNs), a novel method for generating diverse optimal solutions, based on GFlowNets.
- Score: 59.16787189214784
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We study the problem of generating diverse candidates in the context of
Multi-Objective Optimization. In many applications of machine learning such as
drug discovery and material design, the goal is to generate candidates which
simultaneously optimize a set of potentially conflicting objectives. Moreover,
these objectives are often imperfect evaluations of some underlying property of
interest, making it important to generate diverse candidates to have multiple
options for expensive downstream evaluations. We propose Multi-Objective
GFlowNets (MOGFNs), a novel method for generating diverse Pareto optimal
solutions, based on GFlowNets. We introduce two variants of MOGFNs: MOGFN-PC,
which models a family of independent sub-problems defined by a scalarization
function, with reward-conditional GFlowNets, and MOGFN-AL, which solves a
sequence of sub-problems defined by an acquisition function in an active
learning loop. Our experiments on wide variety of synthetic and benchmark tasks
demonstrate advantages of the proposed methods in terms of the Pareto
performance and importantly, improved candidate diversity, which is the main
contribution of this work.
Related papers
- UCB-driven Utility Function Search for Multi-objective Reinforcement Learning [75.11267478778295]
In Multi-objective Reinforcement Learning (MORL) agents are tasked with optimising decision-making behaviours.
We focus on the case of linear utility functions parameterised by weight vectors w.
We introduce a method based on Upper Confidence Bound to efficiently search for the most promising weight vectors during different stages of the learning process.
arXiv Detail & Related papers (2024-05-01T09:34:42Z) - BOtied: Multi-objective Bayesian optimization with tied multivariate ranks [33.414682601242006]
In this paper, we show a natural connection between non-dominated solutions and the extreme quantile of the joint cumulative distribution function.
Motivated by this link, we propose the Pareto-compliant CDF indicator and the associated acquisition function, BOtied.
Our experiments on a variety of synthetic and real-world problems demonstrate that BOtied outperforms state-of-the-art MOBO acquisition functions.
arXiv Detail & Related papers (2023-06-01T04:50:06Z) - Let the Flows Tell: Solving Graph Combinatorial Optimization Problems
with GFlowNets [86.43523688236077]
Combinatorial optimization (CO) problems are often NP-hard and out of reach for exact algorithms.
GFlowNets have emerged as a powerful machinery to efficiently sample from composite unnormalized densities sequentially.
In this paper, we design Markov decision processes (MDPs) for different problems and propose to train conditional GFlowNets to sample from the solution space.
arXiv Detail & Related papers (2023-05-26T15:13:09Z) - Sample-efficient Multi-objective Molecular Optimization with GFlowNets [5.030493242666028]
We propose a multi-objective Bayesian optimization (MOBO) algorithm leveraging the hypernetwork-based GFlowNets (HN-GFN)
Using a single preference-conditioned hypernetwork, HN-GFN learns to explore various trade-offs between objectives.
Experiments in various real-world settings demonstrate that our framework predominantly outperforms existing methods in terms of candidate quality and sample efficiency.
arXiv Detail & Related papers (2023-02-08T13:30:28Z) - Joint Entropy Search for Multi-objective Bayesian Optimization [0.0]
We propose a novel information-theoretic acquisition function for BO called Joint Entropy Search.
We showcase the effectiveness of this new approach on a range of synthetic and real-world problems in terms of the hypervolume and its weighted variants.
arXiv Detail & Related papers (2022-10-06T13:19:08Z) - Biological Sequence Design with GFlowNets [75.1642973538266]
Design of de novo biological sequences with desired properties often involves an active loop with several rounds of molecule ideation and expensive wet-lab evaluations.
This makes the diversity of proposed candidates a key consideration in the ideation phase.
We propose an active learning algorithm leveraging uncertainty estimation and the recently proposed GFlowNets as a generator of diverse candidate solutions.
arXiv Detail & Related papers (2022-03-02T15:53:38Z) - Multi-Objective Quality Diversity Optimization [2.4608515808275455]
We propose an extension of the MAP-Elites algorithm in the multi-objective setting: Multi-Objective MAP-Elites (MOME)
Namely, it combines the diversity inherited from the MAP-Elites grid algorithm with the strength of multi-objective optimizations.
We evaluate our method on several tasks, from standard optimization problems to robotics simulations.
arXiv Detail & Related papers (2022-02-07T10:48:28Z) - Efficient Model-Based Multi-Agent Mean-Field Reinforcement Learning [89.31889875864599]
We propose an efficient model-based reinforcement learning algorithm for learning in multi-agent systems.
Our main theoretical contributions are the first general regret bounds for model-based reinforcement learning for MFC.
We provide a practical parametrization of the core optimization problem.
arXiv Detail & Related papers (2021-07-08T18:01:02Z) - Flow Network based Generative Models for Non-Iterative Diverse Candidate
Generation [110.09855163856326]
This paper is about the problem of learning a policy for generating an object from a sequence of actions.
We propose GFlowNet, based on a view of the generative process as a flow network.
We prove that any global minimum of the proposed objectives yields a policy which samples from the desired distribution.
arXiv Detail & Related papers (2021-06-08T14:21:10Z) - Multi-Fidelity Multi-Objective Bayesian Optimization: An Output Space
Entropy Search Approach [44.25245545568633]
We study the novel problem of blackbox optimization of multiple objectives via multi-fidelity function evaluations.
Our experiments on several synthetic and real-world benchmark problems show that MF-OSEMO, with both approximations, significantly improves over the state-of-the-art single-fidelity algorithms.
arXiv Detail & Related papers (2020-11-02T06:59:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.