論文の概要: Comparing Computational Architectures for Automated Journalism
- arxiv url: http://arxiv.org/abs/2210.04107v1
- Date: Sat, 8 Oct 2022 21:20:52 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-11 14:30:49.353685
- Title: Comparing Computational Architectures for Automated Journalism
- Title(参考訳): 自動ジャーナリズムのための計算アーキテクチャの比較
- Authors: Yan V. Sym, Jo\~ao Gabriel M. Campos, Marcos M. Jos\'e, Fabio G.
Cozman
- Abstract要約: 本研究は、ブラジルポルトガル語のテキストを構造化データから生成する最もよく用いられる手法を比較した。
その結果、生成プロセスにおける明示的な中間ステップは、ニューラルエンド・ツー・エンドアーキテクチャによって生成されるものよりも優れたテキストを生成することが示唆された。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The majority of NLG systems have been designed following either a
template-based or a pipeline-based architecture. Recent neural models for
data-to-text generation have been proposed with an end-to-end deep learning
flavor, which handles non-linguistic input in natural language without explicit
intermediary representations. This study compares the most often employed
methods for generating Brazilian Portuguese texts from structured data. Results
suggest that explicit intermediate steps in the generation process produce
better texts than the ones generated by neural end-to-end architectures,
avoiding data hallucination while better generalizing to unseen inputs. Code
and corpus are publicly available.
- Abstract(参考訳): NLGシステムの大部分はテンプレートベースまたはパイプラインベースのアーキテクチャに従って設計されている。
データからテキストへの生成のための最近のニューラルモデルは、明示的な中間表現なしで自然言語における非言語的入力を処理するエンドツーエンドのディープラーニングフレーバーと共に提案されている。
本研究は、ブラジルポルトガル語のテキストを構造化データから生成する最もよく用いられる手法を比較した。
その結果、生成プロセスの明示的な中間ステップは、ニューラルネットワークのエンドツーエンドアーキテクチャによって生成されたものよりも優れたテキストを生成し、データの幻覚を回避し、未認識の入力にもっと一般化することを示唆する。
コードとコーパスは公開されている。
関連論文リスト
- The Whole Truth and Nothing But the Truth: Faithful and Controllable
Dialogue Response Generation with Dataflow Transduction and Constrained
Decoding [65.34601470417967]
本稿では,ニューラルネットワークモデリングとルールベース生成の強みを組み合わせた対話応答生成のためのハイブリッドアーキテクチャについて述べる。
本実験により, 本システムは, 流布性, 妥当性, 真理性の評価において, ルールベースおよび学習的アプローチの両方に優れることがわかった。
論文 参考訳(メタデータ) (2022-09-16T09:00:49Z) - Deep Latent-Variable Models for Text Generation [7.119436003155924]
ディープニューラルネットワークベースのエンドツーエンドアーキテクチャが広く採用されている。
エンドツーエンドのアプローチは、以前は複雑な手作りのルールで設計されていたすべてのサブモジュールを、全体的なエンコード・デコードアーキテクチャに融合させる。
この論文は、テキスト生成のための標準エンコーダデコーダモデルよりも、潜伏変数の深いモデルがいかに改善できるかを示す。
論文 参考訳(メタデータ) (2022-03-03T23:06:39Z) - AUGNLG: Few-shot Natural Language Generation using Self-trained Data
Augmentation [26.016540126949103]
本稿では,自己学習型ニューラル検索モデルと数ショット学習型NLUモデルを組み合わせた新しいデータ拡張手法であるAUGNLGを提案する。
提案方式はBLEUとSlot Error Rateの両方でFewShotWOZデータの最先端の手法よりも優れている。
論文 参考訳(メタデータ) (2021-06-10T08:45:28Z) - Learning to Synthesize Data for Semantic Parsing [57.190817162674875]
本稿では,プログラムの構成をモデル化し,プログラムを発話にマップする生成モデルを提案する。
PCFGと事前学習されたBARTの簡易性により,既存のデータから効率的に生成モデルを学習することができる。
GeoQuery と Spider の標準ベンチマークで解析する text-to-Query の in-domain と out-of-domain の両方で、この手法を評価します。
論文 参考訳(メタデータ) (2021-04-12T21:24:02Z) - SDA: Improving Text Generation with Self Data Augmentation [88.24594090105899]
自動データ拡張のための自己模倣学習フェーズを組み込むことにより,標準最大確率推定(MLE)パラダイムを改善することを提案する。
既存の文レベルの拡張戦略とは異なり,本手法はより汎用的で,任意のMLEベースの訓練手順に容易に適応できる。
論文 参考訳(メタデータ) (2021-01-02T01:15:57Z) - Unsupervised Paraphrasing with Pretrained Language Models [85.03373221588707]
教師なし環境で,事前学習した言語モデルを用いて高品質なパラフレーズを生成する訓練パイプラインを提案する。
提案手法は,タスク適応,自己スーパービジョン,動的ブロッキング(Dynamic Blocking)という新しい復号アルゴリズムから構成される。
提案手法は,Quora Question PairとParaNMTの両方のデータセット上で,最先端の性能を達成できることを示す。
論文 参考訳(メタデータ) (2020-10-24T11:55:28Z) - POINTER: Constrained Progressive Text Generation via Insertion-based
Generative Pre-training [93.79766670391618]
ハードコントラストテキスト生成のための新しい挿入ベースアプローチであるPOINTERを提案する。
提案手法は,既存のトークン間で段階的に新しいトークンを並列に挿入することによって動作する。
結果として生じる粗大な階層構造は、生成プロセスを直感的で解釈可能である。
論文 参考訳(メタデータ) (2020-05-01T18:11:54Z) - Unnatural Language Processing: Bridging the Gap Between Synthetic and
Natural Language Data [37.542036032277466]
本稿では,言語理解問題における-simulation-to-real'転送手法を提案する。
我々のアプローチは、いくつかのドメインで自然言語データに基づいて訓練された最先端のモデルと一致または性能を向上する。
論文 参考訳(メタデータ) (2020-04-28T16:41:00Z) - Improved Code Summarization via a Graph Neural Network [96.03715569092523]
一般に、ソースコード要約技術はソースコードを入力として使用し、自然言語記述を出力する。
これらの要約を生成するために、ASTのデフォルト構造によくマッチするグラフベースのニューラルアーキテクチャを使用するアプローチを提案する。
論文 参考訳(メタデータ) (2020-04-06T17:36:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。