HEGEL: Hypergraph Transformer for Long Document Summarization
- URL: http://arxiv.org/abs/2210.04126v1
- Date: Sun, 9 Oct 2022 00:32:50 GMT
- Title: HEGEL: Hypergraph Transformer for Long Document Summarization
- Authors: Haopeng Zhang, Xiao Liu, Jiawei Zhang
- Abstract summary: This paper proposes HEGEL, a hypergraph neural network for long document summarization by capturing high-order cross-sentence relations.
We validate HEGEL by conducting extensive experiments on two benchmark datasets, and experimental results demonstrate the effectiveness and efficiency of HEGEL.
- Score: 14.930704950433324
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Extractive summarization for long documents is challenging due to the
extended structured input context. The long-distance sentence dependency
hinders cross-sentence relations modeling, the critical step of extractive
summarization. This paper proposes HEGEL, a hypergraph neural network for long
document summarization by capturing high-order cross-sentence relations. HEGEL
updates and learns effective sentence representations with hypergraph
transformer layers and fuses different types of sentence dependencies,
including latent topics, keywords coreference, and section structure. We
validate HEGEL by conducting extensive experiments on two benchmark datasets,
and experimental results demonstrate the effectiveness and efficiency of HEGEL.
Related papers
- GEGA: Graph Convolutional Networks and Evidence Retrieval Guided Attention for Enhanced Document-level Relation Extraction [15.246183329778656]
Document-level relation extraction (DocRE) aims to extract relations between entities from unstructured document text.
To overcome these challenges, we propose GEGA, a novel model for DocRE.
We evaluate the GEGA model on three widely used benchmark datasets: DocRED, Re-DocRED, and Revisit-DocRED.
arXiv Detail & Related papers (2024-07-31T07:15:33Z) - Fine-Grained Distillation for Long Document Retrieval [86.39802110609062]
Long document retrieval aims to fetch query-relevant documents from a large-scale collection.
Knowledge distillation has become de facto to improve a retriever by mimicking a heterogeneous yet powerful cross-encoder.
We propose a new learning framework, fine-grained distillation (FGD), for long-document retrievers.
arXiv Detail & Related papers (2022-12-20T17:00:36Z) - Modeling Context With Linear Attention for Scalable Document-Level
Translation [72.41955536834702]
We investigate the efficacy of a recent linear attention model on document translation and augment it with a sentential gate to promote a recency inductive bias.
We show that sentential gating further improves translation quality on IWSLT.
arXiv Detail & Related papers (2022-10-16T03:41:50Z) - Long Document Summarization with Top-down and Bottom-up Inference [113.29319668246407]
We propose a principled inference framework to improve summarization models on two aspects.
Our framework assumes a hierarchical latent structure of a document where the top-level captures the long range dependency.
We demonstrate the effectiveness of the proposed framework on a diverse set of summarization datasets.
arXiv Detail & Related papers (2022-03-15T01:24:51Z) - Reinforced Abstractive Summarization with Adaptive Length Controlling [12.793451906532223]
Controllable summarization, especially of the length, is an important issue for some practical applications.
We propose an textbfAdaptive textbfLength textbfControlling textbfOptimization (textbfALCO) method to leverage two-stage abstractive summarization model.
arXiv Detail & Related papers (2021-12-14T16:48:47Z) - HETFORMER: Heterogeneous Transformer with Sparse Attention for Long-Text
Extractive Summarization [57.798070356553936]
HETFORMER is a Transformer-based pre-trained model with multi-granularity sparse attentions for extractive summarization.
Experiments on both single- and multi-document summarization tasks show that HETFORMER achieves state-of-the-art performance in Rouge F1.
arXiv Detail & Related papers (2021-10-12T22:42:31Z) - BASS: Boosting Abstractive Summarization with Unified Semantic Graph [49.48925904426591]
BASS is a framework for Boosting Abstractive Summarization based on a unified Semantic graph.
A graph-based encoder-decoder model is proposed to improve both the document representation and summary generation process.
Empirical results show that the proposed architecture brings substantial improvements for both long-document and multi-document summarization tasks.
arXiv Detail & Related papers (2021-05-25T16:20:48Z) - Enhancing Extractive Text Summarization with Topic-Aware Graph Neural
Networks [21.379555672973975]
This paper proposes a graph neural network (GNN)-based extractive summarization model.
Our model integrates a joint neural topic model (NTM) to discover latent topics, which can provide document-level features for sentence selection.
The experimental results demonstrate that our model achieves substantially state-of-the-art results on CNN/DM and NYT datasets.
arXiv Detail & Related papers (2020-10-13T09:30:04Z) - Heterogeneous Graph Neural Networks for Extractive Document
Summarization [101.17980994606836]
Cross-sentence relations are a crucial step in extractive document summarization.
We present a graph-based neural network for extractive summarization (HeterSumGraph)
We introduce different types of nodes into graph-based neural networks for extractive document summarization.
arXiv Detail & Related papers (2020-04-26T14:38:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.