Prediction intervals for neural network models using weighted asymmetric
loss functions
- URL: http://arxiv.org/abs/2210.04318v5
- Date: Tue, 18 Jul 2023 20:31:51 GMT
- Title: Prediction intervals for neural network models using weighted asymmetric
loss functions
- Authors: Milo Grillo, Yunpeng Han and Agnieszka Werpachowska
- Abstract summary: We propose a simple and efficient approach to generate a prediction intervals (PI) for approximated and forecasted trends.
Our method leverages a weighted asymmetric loss function to estimate the lower and upper bounds of the PI.
We show how it can be extended to derive PIs for parametrised functions and discuss its effectiveness when training deep neural networks.
- Score: 0.3093890460224435
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a simple and efficient approach to generate a prediction intervals
(PI) for approximated and forecasted trends. Our method leverages a weighted
asymmetric loss function to estimate the lower and upper bounds of the PI, with
the weights determined by its coverage probability. We provide a concise
mathematical proof of the method, show how it can be extended to derive PIs for
parametrised functions and discuss its effectiveness when training deep neural
networks. The presented tests of the method on a real-world forecasting task
using a neural network-based model show that it can produce reliable PIs in
complex machine learning scenarios.
Related papers
- A variational neural Bayes framework for inference on intractable posterior distributions [1.0801976288811024]
Posterior distributions of model parameters are efficiently obtained by feeding observed data into a trained neural network.
We show theoretically that our posteriors converge to the true posteriors in Kullback-Leibler divergence.
arXiv Detail & Related papers (2024-04-16T20:40:15Z) - Tractable Function-Space Variational Inference in Bayesian Neural
Networks [72.97620734290139]
A popular approach for estimating the predictive uncertainty of neural networks is to define a prior distribution over the network parameters.
We propose a scalable function-space variational inference method that allows incorporating prior information.
We show that the proposed method leads to state-of-the-art uncertainty estimation and predictive performance on a range of prediction tasks.
arXiv Detail & Related papers (2023-12-28T18:33:26Z) - Dual Accuracy-Quality-Driven Neural Network for Prediction Interval Generation [0.0]
We present a method to learn prediction intervals for regression-based neural networks automatically.
Our main contribution is the design of a novel loss function for the PI-generation network.
Experiments using a synthetic dataset, eight benchmark datasets, and a real-world crop yield prediction dataset showed that our method was able to maintain a nominal probability coverage.
arXiv Detail & Related papers (2022-12-13T05:03:16Z) - Learning to Learn with Generative Models of Neural Network Checkpoints [71.06722933442956]
We construct a dataset of neural network checkpoints and train a generative model on the parameters.
We find that our approach successfully generates parameters for a wide range of loss prompts.
We apply our method to different neural network architectures and tasks in supervised and reinforcement learning.
arXiv Detail & Related papers (2022-09-26T17:59:58Z) - Scalable computation of prediction intervals for neural networks via
matrix sketching [79.44177623781043]
Existing algorithms for uncertainty estimation require modifying the model architecture and training procedure.
This work proposes a new algorithm that can be applied to a given trained neural network and produces approximate prediction intervals.
arXiv Detail & Related papers (2022-05-06T13:18:31Z) - NUQ: Nonparametric Uncertainty Quantification for Deterministic Neural
Networks [151.03112356092575]
We show the principled way to measure the uncertainty of predictions for a classifier based on Nadaraya-Watson's nonparametric estimate of the conditional label distribution.
We demonstrate the strong performance of the method in uncertainty estimation tasks on a variety of real-world image datasets.
arXiv Detail & Related papers (2022-02-07T12:30:45Z) - Neural Networks for Parameter Estimation in Intractable Models [0.0]
We show how to estimate parameters from max-stable processes, where inference is exceptionally challenging.
We use data from model simulations as input and train deep neural networks to learn statistical parameters.
arXiv Detail & Related papers (2021-07-29T21:59:48Z) - MINIMALIST: Mutual INformatIon Maximization for Amortized Likelihood
Inference from Sampled Trajectories [61.3299263929289]
Simulation-based inference enables learning the parameters of a model even when its likelihood cannot be computed in practice.
One class of methods uses data simulated with different parameters to infer an amortized estimator for the likelihood-to-evidence ratio.
We show that this approach can be formulated in terms of mutual information between model parameters and simulated data.
arXiv Detail & Related papers (2021-06-03T12:59:16Z) - Estimation of the Mean Function of Functional Data via Deep Neural
Networks [6.230751621285321]
We propose a deep neural network method to perform nonparametric regression for functional data.
The proposed method is applied to analyze positron emission tomography images of patients with Alzheimer disease.
arXiv Detail & Related papers (2020-12-08T17:18:16Z) - PIVEN: A Deep Neural Network for Prediction Intervals with Specific
Value Prediction [14.635820704895034]
We present PIVEN, a deep neural network for producing both a PI and a value prediction.
Our approach makes no assumptions regarding data distribution within the PI, making its value prediction more effective for various real-world problems.
arXiv Detail & Related papers (2020-06-09T09:29:58Z) - Learned Factor Graphs for Inference from Stationary Time Sequences [107.63351413549992]
We propose a framework that combines model-based algorithms and data-driven ML tools for stationary time sequences.
neural networks are developed to separately learn specific components of a factor graph describing the distribution of the time sequence.
We present an inference algorithm based on learned stationary factor graphs, which learns to implement the sum-product scheme from labeled data.
arXiv Detail & Related papers (2020-06-05T07:06:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.