論文の概要: Semantic Framework based Query Generation for Temporal Question
Answering over Knowledge Graphs
- arxiv url: http://arxiv.org/abs/2210.04490v3
- Date: Thu, 11 May 2023 06:29:09 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-12 18:48:09.579916
- Title: Semantic Framework based Query Generation for Temporal Question
Answering over Knowledge Graphs
- Title(参考訳): 知識グラフを用いた時間質問応答のための意味的フレームワークに基づくクエリ生成
- Authors: Wentao Ding, Hao Chen, Huayu Li, Yuzhong Qu
- Abstract要約: 本稿では,提案するエンティティの関連事実を探索し,問合せグラフを生成する時間的質問応答手法であるSF-TQAを提案する。
評価の結果,SF-TQAは知識グラフの異なる2つのベンチマークにおいて既存手法よりも有意に優れていた。
- 参考スコア(独自算出の注目度): 19.851986862305623
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Answering factual questions with temporal intent over knowledge graphs
(temporal KGQA) attracts rising attention in recent years. In the generation of
temporal queries, existing KGQA methods ignore the fact that some intrinsic
connections between events can make them temporally related, which may limit
their capability. We systematically analyze the possible interpretation of
temporal constraints and conclude the interpretation structures as the Semantic
Framework of Temporal Constraints, SF-TCons. Based on the semantic framework,
we propose a temporal question answering method, SF-TQA, which generates query
graphs by exploring the relevant facts of mentioned entities, where the
exploring process is restricted by SF-TCons. Our evaluations show that SF-TQA
significantly outperforms existing methods on two benchmarks over different
knowledge graphs.
- Abstract(参考訳): 近年,知識グラフ(時間的KGQA)に対する時間的意図による事実質問への回答が注目されている。
時間的クエリの生成において、既存のKGQAメソッドは、イベント間の固有の接続が時間的に関連し、その能力を制限することができるという事実を無視している。
我々は,時間的制約の解釈を体系的に分析し,解釈構造を時間的制約の意味的枠組み,SF-TConsとして結論付ける。
提案手法は,検索プロセスがSF-TConsによって制限されるような,参照するエンティティの関連事実を探索することによってクエリグラフを生成する,時間的質問応答手法であるSF-TQAを提案する。
評価の結果,SF-TQAは知識グラフの異なる2つのベンチマークにおいて既存手法よりも優れていた。
関連論文リスト
- Self-Improvement Programming for Temporal Knowledge Graph Question Answering [31.33908040172437]
時間的知識グラフ質問回答(TKGQA)は、時間的知識グラフ(TKG)に対する時間的意図で質問に答えることを目的としている。
既存のエンドツーエンドの手法は、質問や候補者の回答の埋め込みを学習することで、時間制約を暗黙的にモデル化する。
TKGQA(Prog-TQA)のための新しい自己改善プログラミング手法を提案する。
論文 参考訳(メタデータ) (2024-04-02T08:14:27Z) - Multi-hop Question Answering under Temporal Knowledge Editing [9.356343796845662]
知識編集(KE)におけるマルチホップ質問応答(MQA)は,大規模言語モデルの時代において大きな注目を集めている。
KEの下でのMQAの既存のモデルは、明示的な時間的コンテキストを含む質問を扱う場合、パフォーマンスが劣っている。
TEMPoral knowLEdge augmented Multi-hop Question Answering (TEMPLE-MQA) を提案する。
論文 参考訳(メタデータ) (2024-03-30T23:22:51Z) - Joint Multi-Facts Reasoning Network For Complex Temporal Question
Answering Over Knowledge Graph [34.44840297353777]
時間的知識グラフ(TKG)は、時間範囲をアタッチすることで、通常の知識グラフの拡張である。
textbfunderlineMulti textbfunderlineFacts textbfunderlineReasoning textbfunderlineNetwork (JMFRN)を提案する。
論文 参考訳(メタデータ) (2024-01-04T11:34:39Z) - Towards Robust Temporal Reasoning of Large Language Models via a Multi-Hop QA Dataset and Pseudo-Instruction Tuning [73.51314109184197]
大規模言語モデル(LLM)には時間的知識の概念を理解することが不可欠である。
本稿では,複数質問応答と複数ホップの時間的推論に焦点をあてた複雑な時間的質問応答データセットであるComplex-TRを提案する。
論文 参考訳(メタデータ) (2023-11-16T11:49:29Z) - Unlocking Temporal Question Answering for Large Language Models with Tailor-Made Reasoning Logic [84.59255070520673]
大きな言語モデル(LLM)は、時間的推論に関わる際に課題に直面します。
本研究では,時間的質問応答タスクに特化して設計された新しいフレームワークであるTempLogicを提案する。
論文 参考訳(メタデータ) (2023-05-24T10:57:53Z) - HiSMatch: Historical Structure Matching based Temporal Knowledge Graph
Reasoning [59.38797474903334]
本稿では,textbfHistorical textbfStructure textbfMatching (textbfHiSMatch)モデルを提案する。
クエリと候補エンティティの履歴構造に含まれる意味情報をキャプチャするために、2つの構造エンコーダを適用する。
6つのベンチマークデータセットの実験では、提案されたHiSMatchモデルが、最先端のベースラインと比較して最大5.6%のパフォーマンス改善を達成している。
論文 参考訳(メタデータ) (2022-10-18T09:39:26Z) - TwiRGCN: Temporally Weighted Graph Convolution for Question Answering
over Temporal Knowledge Graphs [35.50055476282997]
時間的質問応答(QA)のための関係グラフ畳み込みネットワーク(RGCN)の一般化方法を示す。
コンボリューション中にKGエッジを通過するメッセージを変調する,新しい,直感的で解釈可能な方式を提案する。
TwiRGCN(TwiRGCN)と呼ばれる、複雑な時間的QAのための、最近リリースされた挑戦的データセットであるTimeQuestions(TimeQuestions)において、結果システムを評価する。
論文 参考訳(メタデータ) (2022-10-12T15:03:49Z) - Frame-Subtitle Self-Supervision for Multi-Modal Video Question Answering [73.11017833431313]
マルチモーダルなビデオ質問応答は、正しい回答を予測し、その質問に関連する時間的境界をローカライズすることを目的としている。
我々は、QAアノテーションのみを使用する、弱い教師付き質問基盤(WSQG)の設定を考案する。
フレームと字幕の対応をフレーム字幕(FS)に変換し,時間的注意スコアの最適化を支援する。
論文 参考訳(メタデータ) (2022-09-08T07:20:51Z) - A Benchmark for Generalizable and Interpretable Temporal Question
Answering over Knowledge Bases [67.33560134350427]
TempQA-WDは時間的推論のためのベンチマークデータセットである。
Wikidataは、最も頻繁にキュレーションされ、公開されている知識ベースである。
論文 参考訳(メタデータ) (2022-01-15T08:49:09Z) - TempoQR: Temporal Question Reasoning over Knowledge Graphs [11.054877399064804]
本稿では,知識グラフに関する複雑な疑問に答える包括的埋め込み型フレームワークを提案する。
提案手法は時間的問題推論(TempoQR)と呼ばれ、TKGの埋め込みを利用して、対象とする特定のエンティティや時間範囲に疑問を定めている。
実験の結果,TempoQRの精度は25~45ポイント向上した。
論文 参考訳(メタデータ) (2021-12-10T23:59:14Z) - NExT-QA:Next Phase of Question-Answering to Explaining Temporal Actions [80.60423934589515]
NExT-QAは、厳密に設計されたビデオ質問回答(VideoQA)ベンチマークです。
因果的行動推論,時間的行動推論,共通場面理解を対象とする複数選択およびオープンエンドQAタスクを構築した。
トップパフォーマンスの手法は浅い場面記述に優れているが、因果的および時間的行動推論に弱い。
論文 参考訳(メタデータ) (2021-05-18T04:56:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。