論文の概要: Self-Improvement Programming for Temporal Knowledge Graph Question Answering
- arxiv url: http://arxiv.org/abs/2404.01720v1
- Date: Tue, 2 Apr 2024 08:14:27 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-03 17:28:41.395475
- Title: Self-Improvement Programming for Temporal Knowledge Graph Question Answering
- Title(参考訳): 時間的知識グラフ質問応答のための自己改善プログラミング
- Authors: Zhuo Chen, Zhao Zhang, Zixuan Li, Fei Wang, Yutao Zeng, Xiaolong Jin, Yongjun Xu,
- Abstract要約: 時間的知識グラフ質問回答(TKGQA)は、時間的知識グラフ(TKG)に対する時間的意図で質問に答えることを目的としている。
既存のエンドツーエンドの手法は、質問や候補者の回答の埋め込みを学習することで、時間制約を暗黙的にモデル化する。
TKGQA(Prog-TQA)のための新しい自己改善プログラミング手法を提案する。
- 参考スコア(独自算出の注目度): 31.33908040172437
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Temporal Knowledge Graph Question Answering (TKGQA) aims to answer questions with temporal intent over Temporal Knowledge Graphs (TKGs). The core challenge of this task lies in understanding the complex semantic information regarding multiple types of time constraints (e.g., before, first) in questions. Existing end-to-end methods implicitly model the time constraints by learning time-aware embeddings of questions and candidate answers, which is far from understanding the question comprehensively. Motivated by semantic-parsing-based approaches that explicitly model constraints in questions by generating logical forms with symbolic operators, we design fundamental temporal operators for time constraints and introduce a novel self-improvement Programming method for TKGQA (Prog-TQA). Specifically, Prog-TQA leverages the in-context learning ability of Large Language Models (LLMs) to understand the combinatory time constraints in the questions and generate corresponding program drafts with a few examples given. Then, it aligns these drafts to TKGs with the linking module and subsequently executes them to generate the answers. To enhance the ability to understand questions, Prog-TQA is further equipped with a self-improvement strategy to effectively bootstrap LLMs using high-quality self-generated drafts. Extensive experiments demonstrate the superiority of the proposed Prog-TQA on MultiTQ and CronQuestions datasets, especially in the Hits@1 metric.
- Abstract(参考訳): 時間的知識グラフ質問回答(TKGQA)は、時間的知識グラフ(TKG)に対する時間的意図で質問に答えることを目的としている。
このタスクの中核的な課題は、質問における複数の時間制約(例えば、前、先)に関する複雑な意味情報を理解することである。
既存のエンドツーエンドの手法は、質問と候補者の回答のタイムアウェアな埋め込みを学習することで、時間制約を暗黙的にモデル化する。
記号演算子を用いた論理形式を生成することで,問題内の制約を明示的にモデル化する意味解析に基づくアプローチにより,時間制約のための基本時間演算子を設計し,TKGQAのための新しい自己改善プログラミング手法(Prog-TQA)を導入する。
具体的には、 Prog-TQAは、Large Language Models(LLM)のコンテキスト内学習能力を活用して、質問の組合せ時間制約を理解し、いくつかの例で対応するプログラムドラフトを生成する。
そして、これらのドラフトをリンクモジュールとTKGにアライメントし、その後、それらを実行して回答を生成する。
質問の理解力を高めるため,Prog-TQAには,高品質な自己生成ドラフトを用いたLLMを効果的にブートストラップする自己改善戦略が備わっている。
大規模な実験は、MultiTQおよびCronQuestionsデータセットにおける提案されたProg-TQAの優位性を、特にHits@1メトリックで示している。
関連論文リスト
- Multi-hop Question Answering under Temporal Knowledge Editing [9.356343796845662]
知識編集(KE)におけるマルチホップ質問応答(MQA)は,大規模言語モデルの時代において大きな注目を集めている。
KEの下でのMQAの既存のモデルは、明示的な時間的コンテキストを含む質問を扱う場合、パフォーマンスが劣っている。
TEMPoral knowLEdge augmented Multi-hop Question Answering (TEMPLE-MQA) を提案する。
論文 参考訳(メタデータ) (2024-03-30T23:22:51Z) - Automatic Question-Answer Generation for Long-Tail Knowledge [65.11554185687258]
テールエンティティのための特別なQAデータセットを生成するための自動アプローチを提案する。
我々は,新たに生成された長尾QAデータセットに事前学習したLLMを用いて広範な実験を行う。
論文 参考訳(メタデータ) (2024-03-03T03:06:31Z) - Two-stage Generative Question Answering on Temporal Knowledge Graph Using Large Language Models [24.417129499480975]
本稿ではまず,新しい時間的知識グラフ質問応答フレームワークGenTKGQAを提案する。
まず、LLMの本質的な知識を利用して、時間的制約や質問の構造的リンクを余分な訓練なしに掘り下げる。
次に、サブグラフのグラフニューラルネットワーク信号とLLMのテキスト表現を非浅めに融合させる仮想知識インジケータを設計する。
論文 参考訳(メタデータ) (2024-02-26T13:47:09Z) - Joint Multi-Facts Reasoning Network For Complex Temporal Question
Answering Over Knowledge Graph [34.44840297353777]
時間的知識グラフ(TKG)は、時間範囲をアタッチすることで、通常の知識グラフの拡張である。
textbfunderlineMulti textbfunderlineFacts textbfunderlineReasoning textbfunderlineNetwork (JMFRN)を提案する。
論文 参考訳(メタデータ) (2024-01-04T11:34:39Z) - Towards Robust Temporal Reasoning of Large Language Models via a Multi-Hop QA Dataset and Pseudo-Instruction Tuning [73.51314109184197]
大規模言語モデル(LLM)には時間的知識の概念を理解することが不可欠である。
本稿では,複数質問応答と複数ホップの時間的推論に焦点をあてた複雑な時間的質問応答データセットであるComplex-TRを提案する。
論文 参考訳(メタデータ) (2023-11-16T11:49:29Z) - Long-form Question Answering: An Iterative Planning-Retrieval-Generation
Approach [28.849548176802262]
長文質問応答(LFQA)は,段落の形で詳細な回答を生成するため,課題となる。
本稿では,反復計画,検索,生成を伴うLFQAモデルを提案する。
我々のモデルはLFQAタスクの様々なテキストおよび実測値の最先端モデルよりも優れていることがわかった。
論文 参考訳(メタデータ) (2023-11-15T21:22:27Z) - Event Extraction as Question Generation and Answering [72.04433206754489]
イベント抽出に関する最近の研究は、質問回答(QA)としてタスクを再編成した。
そこで我々は,QGA-EEを提案する。QGモデルにより,定型テンプレートを使わずに,リッチな文脈情報を含む質問を生成することができる。
実験の結果、QGA-EEはACE05の英語データセットで以前のシングルタスクベースのモデルよりも優れていた。
論文 参考訳(メタデータ) (2023-07-10T01:46:15Z) - An Empirical Comparison of LM-based Question and Answer Generation
Methods [79.31199020420827]
質問と回答の生成(QAG)は、コンテキストが与えられた質問と回答のペアのセットを生成することで構成される。
本稿では,シーケンス・ツー・シーケンス言語モデル(LM)を微調整する3つの異なるQAG手法を用いて,ベースラインを確立する。
実験により、学習時間と推論時間の両方で計算的に軽量なエンドツーエンドQAGモデルが一般に堅牢であり、他のより複雑なアプローチよりも優れていることが示された。
論文 参考訳(メタデータ) (2023-05-26T14:59:53Z) - UniKGQA: Unified Retrieval and Reasoning for Solving Multi-hop Question
Answering Over Knowledge Graph [89.98762327725112]
KGQA(Multi-hop Question Answering over Knowledge Graph)は、自然言語の質問で言及されているトピックエンティティから、複数のホップを持つ回答エンティティを見つけることを目的としている。
我々は、モデルアーキテクチャとパラメータ学習の両方において、検索と推論を統合することで、マルチホップKGQAタスクの新しいアプローチであるUniKGQAを提案する。
論文 参考訳(メタデータ) (2022-12-02T04:08:09Z) - TempoQR: Temporal Question Reasoning over Knowledge Graphs [11.054877399064804]
本稿では,知識グラフに関する複雑な疑問に答える包括的埋め込み型フレームワークを提案する。
提案手法は時間的問題推論(TempoQR)と呼ばれ、TKGの埋め込みを利用して、対象とする特定のエンティティや時間範囲に疑問を定めている。
実験の結果,TempoQRの精度は25~45ポイント向上した。
論文 参考訳(メタデータ) (2021-12-10T23:59:14Z) - Text Modular Networks: Learning to Decompose Tasks in the Language of
Existing Models [61.480085460269514]
本稿では,既存のモデルで解けるより単純なモデルに分解することで,複雑なタスクを解くための解釈可能なシステムを構築するためのフレームワークを提案する。
我々はこのフレームワークを用いて、ニューラルネットワークのファクトイド単一スパンQAモデルとシンボリック電卓で答えられるサブクエストに分解することで、マルチホップ推論問題に答えられるシステムであるModularQAを構築する。
論文 参考訳(メタデータ) (2020-09-01T23:45:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。