論文の概要: A Survey on Heterogeneous Federated Learning
- arxiv url: http://arxiv.org/abs/2210.04505v1
- Date: Mon, 10 Oct 2022 09:16:43 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-11 18:39:53.656847
- Title: A Survey on Heterogeneous Federated Learning
- Title(参考訳): 不均一フェデレーション学習に関する調査研究
- Authors: Dashan Gao, Xin Yao, Qiang Yang
- Abstract要約: フェデレートラーニング(FL)は、データプライバシを保護し、プライバシとセキュリティを侵害することなく、組織間のモデルを協調的にトレーニングすることで、独立したデータサイロを組み立てることを目的としている。
しかし、FLはデータ空間、統計、システム不均一性など不均一な側面に直面している。
本稿では,問題設定と学習目的に応じて,各種類の不均一性に対する不均一なFL設定の正確な分類法を提案する。
- 参考スコア(独自算出の注目度): 12.395474890081232
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Federated learning (FL) has been proposed to protect data privacy and
virtually assemble the isolated data silos by cooperatively training models
among organizations without breaching privacy and security. However, FL faces
heterogeneity from various aspects, including data space, statistical, and
system heterogeneity. For example, collaborative organizations without conflict
of interest often come from different areas and have heterogeneous data from
different feature spaces. Participants may also want to train heterogeneous
personalized local models due to non-IID and imbalanced data distribution and
various resource-constrained devices. Therefore, heterogeneous FL is proposed
to address the problem of heterogeneity in FL. In this survey, we
comprehensively investigate the domain of heterogeneous FL in terms of data
space, statistical, system, and model heterogeneity. We first give an overview
of FL, including its definition and categorization. Then, We propose a precise
taxonomy of heterogeneous FL settings for each type of heterogeneity according
to the problem setting and learning objective. We also investigate the transfer
learning methodologies to tackle the heterogeneity in FL. We further present
the applications of heterogeneous FL. Finally, we highlight the challenges and
opportunities and envision promising future research directions toward new
framework design and trustworthy approaches.
- Abstract(参考訳): フェデレートラーニング(FL)は、データプライバシを保護し、プライバシとセキュリティを侵害することなく、組織間のモデルを協調的にトレーニングすることで、独立したデータサイロを事実上組み立てることを目的としている。
しかし、FLはデータ空間、統計、システム不均一性など様々な側面から異質性に直面している。
例えば、関心の対立のない共同組織は、しばしば異なる領域から生まれ、異なる特徴空間から異質なデータを持つ。
参加者はまた、非IIDおよび不均衡なデータ分布と様々なリソース制約されたデバイスのために、異種パーソナライズされたローカルモデルをトレーニングしたい場合もあります。
したがって、FLの不均一性の問題に対処するために不均一FLを提案する。
本研究では,データ空間,統計,システム,モデルの不均一性の観点から,異種flの領域を包括的に検討する。
まずflの概要を説明し,その定義と分類について述べる。
そこで本稿では,問題設定と学習目的に応じて,各種類の不均一性に対する不均一FL設定の正確な分類法を提案する。
また,flの多様性に取り組むためのトランスファー学習手法についても検討した。
さらにヘテロジニアスFLの応用について述べる。
最後に、課題と機会を強調し、新しいフレームワーク設計と信頼できるアプローチに向けた将来的な研究方向性を想定する。
関連論文リスト
- A Unified Solution to Diverse Heterogeneities in One-shot Federated Learning [14.466679488063217]
ワンショットフェデレーション学習(FL)は、サーバとクライアント間の通信を1ラウンドに制限する。
モデルとデータの不均一性の両方を効果的に扱える統一的でデータフリーなワンショットFLフレームワーク(FedHydra)を提案する。
論文 参考訳(メタデータ) (2024-10-28T15:20:52Z) - Comparative Evaluation of Clustered Federated Learning Methods [0.5242869847419834]
CFL(Clustered Federated Learning)は、クライアントを均質なグループに分割することを目的としている。
本稿では,2つの最先端CFLアルゴリズムの性能について,フェデレートラーニング(FL)におけるデータ不均一性の分類法を提案する。
我々の目的は、CFLのパフォーマンスとデータ異種シナリオの関係をより明確に理解することである。
論文 参考訳(メタデータ) (2024-10-18T07:01:56Z) - Addressing Heterogeneity in Federated Learning: Challenges and Solutions for a Shared Production Environment [1.2499537119440245]
フェデレートラーニング(FL)は、分散データソース間で機械学習モデルをトレーニングするための有望なアプローチとして登場した。
本稿では、FLにおけるデータ不均一性について、製造の文脈で概観する。
本研究は,これらの異種性がモデルトレーニングに与える影響について考察し,その悪影響を緩和するための現在の手法を概観する。
論文 参考訳(メタデータ) (2024-08-18T17:49:44Z) - Federated Learning Empowered by Generative Content [55.576885852501775]
フェデレートラーニング(FL)は、プライバシ保護方法でモデルのトレーニングに分散プライベートデータを活用可能にする。
本稿では,FedGCと呼ばれる新しいFLフレームワークを提案する。
我々は、さまざまなベースライン、データセット、シナリオ、モダリティをカバーする、FedGCに関する体系的な実証的研究を行う。
論文 参考訳(メタデータ) (2023-12-10T07:38:56Z) - FedSym: Unleashing the Power of Entropy for Benchmarking the Algorithms
for Federated Learning [1.4656078321003647]
Federated Learning(FL)は、独立した学習者がデータをプライベートに処理する分散機械学習アプローチである。
現在普及しているデータ分割技術について検討し、その主な欠点を可視化する。
エントロピーと対称性を利用して「最も困難」かつ制御可能なデータ分布を構築する手法を提案する。
論文 参考訳(メタデータ) (2023-10-11T18:39:08Z) - Generalizable Heterogeneous Federated Cross-Correlation and Instance
Similarity Learning [60.058083574671834]
本稿では,新しいFCCL+,フェデレーション相関と非ターゲット蒸留との類似性学習を提案する。
不均一な問題に対しては、無関係な公開データを通信に活用する。
局所的な更新段階における破滅的な忘れ物として、FCCL+はFederated Non Target Distillationを導入している。
論文 参考訳(メタデータ) (2023-09-28T09:32:27Z) - PFL-GAN: When Client Heterogeneity Meets Generative Models in
Personalized Federated Learning [55.930403371398114]
パーソナライズドラーニング(PFL)のための新しいGAN(Generative Adversarial Network)の共有と集約戦略を提案する。
PFL-GANは、異なるシナリオにおけるクライアントの不均一性に対処する。より具体的には、まずクライアント間の類似性を学び、次に重み付けされた協調データアグリゲーションを開発する。
いくつかのよく知られたデータセットに対する厳密な実験による実験結果は、PFL-GANの有効性を示している。
論文 参考訳(メタデータ) (2023-08-23T22:38:35Z) - Federated Learning for Data and Model Heterogeneity in Medical Imaging [19.0931609571649]
Federated Learning(FL)は、複数のクライアントがデータを互いに中央サーバと共有することなく、協調学習に参加する、進化する機械学習手法である。
病院や産業などの現実世界のアプリケーションでは、FLはデータ不均一性とモデル不均一性の課題に対処する。
このような問題を解決するためにMDH-FL(Exploiting Model and Data Heterogeneity in FL)を提案する。
論文 参考訳(メタデータ) (2023-07-31T21:08:45Z) - Heterogeneous Federated Learning: State-of-the-art and Research
Challenges [117.77132819796105]
不均一フェデレートラーニング(HFL)はより困難であり、それに対応するソリューションは多様で複雑である。
HFLの新たな進歩を概説し,既存のHFL手法の新たな分類法を提案する。
HFLにおけるいくつかの重要かつ将来的な研究方向性について論じる。
論文 参考訳(メタデータ) (2023-07-20T06:32:14Z) - Local Learning Matters: Rethinking Data Heterogeneity in Federated
Learning [61.488646649045215]
フェデレートラーニング(FL)は、クライアントのネットワーク(エッジデバイス)でプライバシ保護、分散ラーニングを行うための有望な戦略である。
論文 参考訳(メタデータ) (2021-11-28T19:03:39Z) - FedH2L: Federated Learning with Model and Statistical Heterogeneity [75.61234545520611]
フェデレートラーニング(FL)は、分散参加者が個々のデータのプライバシを犠牲にすることなく、強力なグローバルモデルを集合的に学習することを可能にする。
我々はFedH2Lを導入し、これはモデルアーキテクチャに非依存であり、参加者間で異なるデータ分散に対して堅牢である。
パラメータや勾配を共有するアプローチとは対照的に、FedH2Lは相互蒸留に依存し、参加者間で共有シードセットの後方のみを分散的に交換する。
論文 参考訳(メタデータ) (2021-01-27T10:10:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。