論文の概要: Evaluating Point Cloud Quality via Transformational Complexity
- arxiv url: http://arxiv.org/abs/2210.04671v1
- Date: Mon, 10 Oct 2022 13:20:51 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-11 19:16:24.798531
- Title: Evaluating Point Cloud Quality via Transformational Complexity
- Title(参考訳): 変態複雑度によるポイントクラウドの品質評価
- Authors: Yujie Zhang, Qi Yang, Yifei Zhou, Xiaozhong Xu, Le Yang, Yiling Xu
- Abstract要約: フルリファレンスポイントクラウド品質評価(FR-PCQA)は、歪んだポイントクラウドの品質を利用可能なリファレンスで推測することを目的としている。
本稿では、歪んだ点雲を基準に戻す複雑さを計測することで、点雲の品質を導出しようと試みる。
- 参考スコア(独自算出の注目度): 26.88219200020205
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Full-reference point cloud quality assessment (FR-PCQA) aims to infer the
quality of distorted point clouds with available references. Merging the
research of cognitive science and intuition of the human visual system (HVS),
the difference between the expected perceptual result and the practical
perception reproduction in the visual center of the cerebral cortex indicates
the subjective quality degradation. Therefore in this paper, we try to derive
the point cloud quality by measuring the complexity of transforming the
distorted point cloud back to its reference, which in practice can be
approximated by the code length of one point cloud when the other is given. For
this purpose, we first segment the reference and the distorted point cloud into
a series of local patch pairs based on one 3D Voronoi diagram. Next, motivated
by the predictive coding theory, we utilize one space-aware vector
autoregressive (SA-VAR) model to encode the geometry and color channels of each
reference patch in cases with and without the distorted patch, respectively.
Specifically, supposing that the residual errors follow the multi-variate
Gaussian distributions, we calculate the self-complexity of the reference and
the transformational complexity between the reference and the distorted sample
via covariance matrices. Besides the complexity terms, the prediction terms
generated by SA-VAR are introduced as one auxiliary feature to promote the
final quality prediction. Extensive experiments on five public point cloud
quality databases demonstrate that the transformational complexity based
distortion metric (TCDM) produces state-of-the-art (SOTA) results, and ablation
studies have further shown that our metric can be generalized to various
scenarios with consistent performance by examining its key modules and
parameters.
- Abstract(参考訳): フルリファレンスポイントクラウド品質評価(FR-PCQA)は、歪んだポイントクラウドの品質を利用可能なリファレンスで推測することを目的としている。
認知科学研究と人間の視覚システム(hvs)の直観の融合により、期待された知覚結果と大脳皮質の視覚中心における実際的な知覚再現との差は主観的品質低下を示す。
そこで本稿では,歪んだ点雲をその基準に戻す複雑さを計測し,一方の点雲の符号長で近似し,他方が与えられた場合の点雲の品質を導出する。
この目的のために、まず基準と歪んだ点雲を1つの3次元ボロノイ図に基づいて一連の局所パッチ対に分割する。
次に, 予測符号化理論に動機づけられ, 1つの空間認識ベクトル自己回帰(sa-var)モデルを用いて, 各々の基準パッチの形状と色チャネルを歪みパッチの有無でエンコードする。
具体的には、残差誤差が多変量ガウス分布に従うことを仮定し、共分散行列を用いて基準と歪んだサンプルの間の自己複雑度と変換複雑性を計算する。
複雑性項の他に、sa-var によって生成された予測項が最終品質予測を促進する補助的特徴として導入された。
5つのパブリックポイントのクラウド品質データベースに関する広範な実験は、トランスフォーメーション複雑性に基づく歪みメトリック(tcdm)が最先端(sota)結果を生み出すことを証明し、アブレーションの研究により、主要なモジュールとパラメータを調べることによって、当社のメトリクスが一貫したパフォーマンスを持つ様々なシナリオに一般化できることがさらに示されている。
関連論文リスト
- Rendering-Oriented 3D Point Cloud Attribute Compression using Sparse Tensor-based Transformer [52.40992954884257]
3D視覚化技術は、私たちがデジタルコンテンツと対話する方法を根本的に変えてきた。
ポイントクラウドの大規模データサイズは、データ圧縮において大きな課題を呈している。
そこで我々はPCACと差別化可能なレンダリングをシームレスに統合するエンドツーエンドのディープラーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2024-11-12T16:12:51Z) - PseudoNeg-MAE: Self-Supervised Point Cloud Learning using Conditional Pseudo-Negative Embeddings [55.55445978692678]
PseudoNeg-MAEは,ポイントマスク自動エンコーダのグローバルな特徴表現を強化する,自己教師型学習フレームワークである。
PseudoNeg-MAE は ModelNet40 と ScanObjectNN のデータセット上で最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2024-09-24T07:57:21Z) - Bridging Domain Gap of Point Cloud Representations via Self-Supervised Geometric Augmentation [15.881442863961531]
領域間の点雲表現の幾何学的不変性を誘導する新しいスキームを提案する。
一方、点雲のセントロイドシフトを軽減するために、拡張サンプルの距離の変換を予測するための新しいプレテキストタスクが提案されている。
一方,我々は幾何学的に拡張された点雲上での自己教師付き関係学習の統合を開拓した。
論文 参考訳(メタデータ) (2024-09-11T02:39:19Z) - Perception-Guided Quality Metric of 3D Point Clouds Using Hybrid Strategy [38.942691194229724]
フルリファレンスポイントクラウド品質評価(FR-PCQA)は、歪んだポイントクラウドの品質を利用可能なリファレンスで推測することを目的としている。
既存のFR-PCQAメトリクスのほとんどは、人間の視覚システム(HVS)が様々な歪みレベルに応じて視覚情報に動的に取り組むという事実を無視している。
本稿では,2つの視覚的戦略を歪み度に関して適応的に活用し,点雲の質を予測するための知覚誘導ハイブリッド計量(PHM)を提案する。
論文 参考訳(メタデータ) (2024-07-04T12:23:39Z) - Contrastive Pre-Training with Multi-View Fusion for No-Reference Point Cloud Quality Assessment [49.36799270585947]
No-Reference Point Cloud Quality Assessment (NR-PCQA) は、歪んだ点雲の知覚的品質を、参照なしで自動的に評価することを目的としている。
我々は,PCQA(CoPA)に適した新しいコントラスト付き事前学習フレームワークを提案する。
提案手法は,最新のPCQA手法よりも高い性能を示す。
論文 参考訳(メタデータ) (2024-03-15T07:16:07Z) - Unleash the Potential of 3D Point Cloud Modeling with A Calibrated Local
Geometry-driven Distance Metric [62.365983810610985]
そこで我々は,Callibated Local Geometry Distance (CLGD) と呼ばれる新しい距離測定法を提案する。
CLGDは、基準点の集合によってキャリブレーションされ誘導される基礎となる3次元表面の差を計算する。
一般的な指標として、CLGDは3Dポイントのクラウドモデリングを前進させる可能性がある。
論文 参考訳(メタデータ) (2023-06-01T11:16:20Z) - Reduced-Reference Quality Assessment of Point Clouds via
Content-Oriented Saliency Projection [17.983188216548005]
多くの高密度な3Dポイントクラウドは、従来の画像やビデオではなく、視覚オブジェクトを表現するために利用されてきた。
本稿では, 点雲に対する新しい, 効率的な還元参照品質指標を提案する。
論文 参考訳(メタデータ) (2023-01-18T18:00:29Z) - GPA-Net:No-Reference Point Cloud Quality Assessment with Multi-task
Graph Convolutional Network [35.381247959766505]
グラフ畳み込みPCQAネットワーク(GPA-Net)と呼ばれる新しい非参照PCQAメトリックを提案する。
PCQAに有効な特徴を抽出するために,構造とテクスチャの摂動を注意深く捉えた新しいグラフ畳み込みカーネル,すなわちGPAConvを提案する。
2つの独立したデータベースの実験結果から、GPA-Netは最先端の非参照PCQAメトリクスと比較して最高のパフォーマンスを達成していることが示された。
論文 参考訳(メタデータ) (2022-10-29T03:06:55Z) - Reduced Reference Perceptual Quality Model and Application to Rate
Control for 3D Point Cloud Compression [61.110938359555895]
レート歪み最適化では、ビットレートの制約を受ける再構成品質尺度を最大化してエンコーダ設定を決定する。
本稿では,V-PCC幾何および色量化パラメータを変数とする線形知覚品質モデルを提案する。
400個の圧縮された3D点雲による主観的品質試験の結果,提案モデルが平均評価値とよく相関していることが示唆された。
また、同じ目標ビットレートに対して、提案モデルに基づくレート歪みの最適化は、ポイント・ツー・ポイントの客観的な品質指標による徹底的な探索に基づくレート歪みの最適化よりも高い知覚品質を提供することを示した。
論文 参考訳(メタデータ) (2020-11-25T12:42:02Z) - Permutation Matters: Anisotropic Convolutional Layer for Learning on
Point Clouds [145.79324955896845]
本稿では,各点のソフトな置換行列を計算する変分異方性畳み込み演算(PAI-Conv)を提案する。
点雲の実験により、PAI-Convは分類とセマンティックセグメンテーションのタスクにおいて競合する結果をもたらすことが示された。
論文 参考訳(メタデータ) (2020-05-27T02:42:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。