論文の概要: mPSAuth: Privacy-Preserving and Scalable Authentication for Mobile Web
Applications
- arxiv url: http://arxiv.org/abs/2210.04777v1
- Date: Fri, 7 Oct 2022 12:49:34 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-11 19:41:36.124000
- Title: mPSAuth: Privacy-Preserving and Scalable Authentication for Mobile Web
Applications
- Title(参考訳): mPSAuth: モバイルWebアプリケーションのためのプライバシ保護とスケーラブルな認証
- Authors: David Monschein and Oliver P. Waldhorst
- Abstract要約: mPSAuthは、ユーザの振る舞いを反映したさまざまなデータソースを継続的に追跡し、現在のユーザが正当である可能性を推定するアプローチである。
我々はmPSAuthが暗号化と通信のオーバーヘッドを低く抑えながら高い精度を提供できることを示した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As nowadays most web application requests originate from mobile devices,
authentication of mobile users is essential in terms of security
considerations. To this end, recent approaches rely on machine learning
techniques to analyze various aspects of user behavior as a basis for
authentication decisions. These approaches face two challenges: first,
examining behavioral data raises significant privacy concerns, and second,
approaches must scale to support a large number of users. Existing approaches
do not address these challenges sufficiently. We propose mPSAuth, an approach
for continuously tracking various data sources reflecting user behavior (e.g.,
touchscreen interactions, sensor data) and estimating the likelihood of the
current user being legitimate based on machine learning techniques. With
mPSAuth, both the authentication protocol and the machine learning models
operate on homomorphically encrypted data to ensure the users' privacy.
Furthermore, the number of machine learning models used by mPSAuth is
independent of the number of users, thus providing adequate scalability. In an
extensive evaluation based on real-world data from a mobile application, we
illustrate that mPSAuth can provide high accuracy with low encryption and
communication overhead, while the effort for the inference is increased to a
tolerable extent.
- Abstract(参考訳): 近年,ほとんどのWebアプリケーション要求はモバイルデバイスから発生しているため,セキュリティ面ではモバイルユーザの認証が不可欠である。
この目的のために、近年のアプローチは、認証決定の基盤として、ユーザー行動の様々な側面を分析する機械学習技術に依存している。
第一に、行動データを調べることは、重大なプライバシー上の懸念を生じさせ、第二に、多数のユーザをサポートするためにスケールしなければならない。
既存のアプローチはこれらの課題を十分に解決していない。
mpsauthは,ユーザの行動(タッチスクリーンインタラクションやセンサデータなど)を反映した,さまざまなデータソースを継続的に追跡し,機械学習手法に基づいて現在のユーザの正当性を推定する手法である。
mPSAuthでは、認証プロトコルと機械学習モデルの両方が均質に暗号化されたデータで動作し、ユーザのプライバシを保証する。
さらに、mPSAuthで使用される機械学習モデルの数は、ユーザ数とは独立しており、十分なスケーラビリティを提供する。
モバイルアプリケーションからの実世界データに基づく広範な評価において,mpsauthは低暗号化と通信オーバーヘッドで高い精度を提供できるが,推論の労力は許容できる程度に増大することを示す。
関連論文リスト
- PriRoAgg: Achieving Robust Model Aggregation with Minimum Privacy Leakage for Federated Learning [49.916365792036636]
フェデレートラーニング(FL)は、大規模分散ユーザデータを活用する可能性から、最近大きな勢いを増している。
送信されたモデル更新は、センシティブなユーザ情報をリークする可能性があり、ローカルなトレーニングプロセスの集中的な制御の欠如は、モデル更新に対する悪意のある操作の影響を受けやすいグローバルモデルを残します。
我々は、Lagrange符号化計算と分散ゼロ知識証明を利用した汎用フレームワークPriRoAggを開発し、集約されたプライバシを満たすとともに、幅広いロバストな集約アルゴリズムを実行する。
論文 参考訳(メタデータ) (2024-07-12T03:18:08Z) - Mind the Privacy Unit! User-Level Differential Privacy for Language Model Fine-Tuning [62.224804688233]
差分プライバシ(DP)は、モデルが特定のプライバシユニットで「ほとんど区別できない」ことを保証することで、有望なソリューションを提供する。
ユーザ間でのプライバシー保護の確保に必要なアプリケーションによって動機づけられたユーザレベルのDPについて検討する。
論文 参考訳(メタデータ) (2024-06-20T13:54:32Z) - Leveraging Machine Learning for Wi-Fi-based Environmental Continuous Two-Factor Authentication [0.44998333629984877]
ユーザの入力を機械学習(ML)による決定に置き換える新しい2FAアプローチを提案する。
本システムは,Wi-Fiアクセスポイント(AP)からのビーコンフレーム特性や受信信号強度指標(RSSI)値など,ユーザに関連するユニークな環境特性を利用する。
セキュリティを強化するため,ユーザの2つのデバイス(ログインデバイスとモバイルデバイス)が,アクセスを許可する前に所定の近くに配置されることを義務付ける。
論文 参考訳(メタデータ) (2024-01-12T14:58:15Z) - Finding Vulnerabilities in Mobile Application APIs: A Modular Programmatic Approach [0.0]
アプリケーションプログラミングインタフェース(API)は、さまざまなモバイルアプリケーションでデータを転送するのにますます人気になっている。
これらのAPIはエンドポイントを通じてセンシティブなユーザ情報を処理します。
本稿では,様々なモバイルAndroidアプリケーションの情報漏洩を分析するために,モジュール型エンドポイント脆弱性検出ツールを開発した。
論文 参考訳(メタデータ) (2023-10-22T00:08:51Z) - Conditional Generative Adversarial Network for keystroke presentation
attack [0.0]
本稿では,キーストローク認証システムへのプレゼンテーションアタックの展開を目的とした新しいアプローチを提案する。
我々の考えは、認証されたユーザを偽装するために使用できる合成キーストロークデータを生成するために、条件付き生成適応ネットワーク(cGAN)を使用することである。
その結果、cGANは、キーストローク認証システムを無効にするために使用できるキーストロークダイナミックスパターンを効果的に生成できることが示唆された。
論文 参考訳(メタデータ) (2022-12-16T12:45:16Z) - Warmup and Transfer Knowledge-Based Federated Learning Approach for IoT
Continuous Authentication [34.6454670154373]
本稿では,ユーザデータの匿名性を保護し,データのセキュリティを維持する新しいフェデレートラーニング(FL)手法を提案する。
ユーザプライバシとデータセキュリティを維持しながら,ユーザ認証の精度を大幅に向上させる実験を行った。
論文 参考訳(メタデータ) (2022-11-10T15:51:04Z) - Machine and Deep Learning Applications to Mouse Dynamics for Continuous
User Authentication [0.0]
この記事では,3つの機械学習アルゴリズムとディープラーニングアルゴリズムを使用して,40人のユーザのデータセットを評価することで,これまでの公開作業に基づいています。
トップパフォーマーは1次元畳み込みニューラルネットワークであり、トップ10ユーザーの平均テスト精度は85.73%である。
また, 92.48%のピーク精度に達する人工ニューラルネットワークを用いて, マルチクラス分類についても検討した。
論文 参考訳(メタデータ) (2022-05-26T21:43:59Z) - RoFL: Attestable Robustness for Secure Federated Learning [59.63865074749391]
フェデレートラーニング(Federated Learning)により、多数のクライアントが、プライベートデータを共有することなく、ジョイントモデルをトレーニングできる。
クライアントのアップデートの機密性を保証するため、フェデレートラーニングシステムはセキュアなアグリゲーションを採用している。
悪意のあるクライアントに対する堅牢性を向上させるセキュアなフェデレート学習システムであるRoFLを提案する。
論文 参考訳(メタデータ) (2021-07-07T15:42:49Z) - Federated Learning-based Active Authentication on Mobile Devices [98.23904302910022]
モバイルデバイス上のユーザアクティブ認証は、デバイスセンサ情報に基づいて登録ユーザを正しく認識できるモデルを学ぶことを目的としている。
Federated Active Authentication (FAA) と呼ばれる新しいユーザーアクティブ認証トレーニングを提案します。
既存のFL/SL法は,同質に分散するデータに依存するため,FAAにとって最適ではないことを示す。
論文 参考訳(メタデータ) (2021-04-14T22:59:08Z) - Federated Learning of User Authentication Models [69.93965074814292]
機械学習モデルのプライバシー保護のためのフレームワークであるFederated User Authentication (FedUA)を提案する。
FedUAは、フェデレートされた学習フレームワークを採用して、ユーザが生の入力を共有することなく、共同でモデルをトレーニングできるようにする。
提案手法はプライバシ保護であり,多数のユーザに対してスケーラブルであることを示し,出力層を変更することなく,新たなユーザをトレーニングに追加できるようにした。
論文 参考訳(メタデータ) (2020-07-09T08:04:38Z) - Unsupervised Model Personalization while Preserving Privacy and
Scalability: An Open Problem [55.21502268698577]
本研究では,非教師なしモデルパーソナライゼーションの課題について検討する。
この問題を探求するための新しいDual User-Adaptation Framework(DUA)を提供する。
このフレームワークは、サーバ上のモデルパーソナライズとユーザデバイス上のローカルデータ正規化に柔軟にユーザ適応を分散させる。
論文 参考訳(メタデータ) (2020-03-30T09:35:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。