論文の概要: PriRoAgg: Achieving Robust Model Aggregation with Minimum Privacy Leakage for Federated Learning
- arxiv url: http://arxiv.org/abs/2407.08954v1
- Date: Fri, 12 Jul 2024 03:18:08 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-16 00:56:38.784869
- Title: PriRoAgg: Achieving Robust Model Aggregation with Minimum Privacy Leakage for Federated Learning
- Title(参考訳): PriRoAgg: フェデレートラーニングのための最小限のプライバシリークでロバストモデル集約を実現する
- Authors: Sizai Hou, Songze Li, Tayyebeh Jahani-Nezhad, Giuseppe Caire,
- Abstract要約: フェデレートラーニング(FL)は、大規模分散ユーザデータを活用する可能性から、最近大きな勢いを増している。
送信されたモデル更新は、センシティブなユーザ情報をリークする可能性があり、ローカルなトレーニングプロセスの集中的な制御の欠如は、モデル更新に対する悪意のある操作の影響を受けやすいグローバルモデルを残します。
我々は、Lagrange符号化計算と分散ゼロ知識証明を利用した汎用フレームワークPriRoAggを開発し、集約されたプライバシを満たすとともに、幅広いロバストな集約アルゴリズムを実行する。
- 参考スコア(独自算出の注目度): 49.916365792036636
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Federated learning (FL) has recently gained significant momentum due to its potential to leverage large-scale distributed user data while preserving user privacy. However, the typical paradigm of FL faces challenges of both privacy and robustness: the transmitted model updates can potentially leak sensitive user information, and the lack of central control of the local training process leaves the global model susceptible to malicious manipulations on model updates. Current solutions attempting to address both problems under the one-server FL setting fall short in the following aspects: 1) designed for simple validity checks that are insufficient against advanced attacks (e.g., checking norm of individual update); and 2) partial privacy leakage for more complicated robust aggregation algorithms (e.g., distances between model updates are leaked for multi-Krum). In this work, we formalize a novel security notion of aggregated privacy that characterizes the minimum amount of user information, in the form of some aggregated statistics of users' updates, that is necessary to be revealed to accomplish more advanced robust aggregation. We develop a general framework PriRoAgg, utilizing Lagrange coded computing and distributed zero-knowledge proof, to execute a wide range of robust aggregation algorithms while satisfying aggregated privacy. As concrete instantiations of PriRoAgg, we construct two secure and robust protocols based on state-of-the-art robust algorithms, for which we provide full theoretical analyses on security and complexity. Extensive experiments are conducted for these protocols, demonstrating their robustness against various model integrity attacks, and their efficiency advantages over baselines.
- Abstract(参考訳): フェデレートラーニング(FL)は、ユーザプライバシを保ちながら、大規模な分散ユーザデータを活用できる可能性から、最近大きな勢いを増している。
しかし、FLの典型的なパラダイムは、プライバシとロバスト性の両方の課題に直面している。送信されたモデル更新は、機密性の高いユーザ情報を漏洩させる可能性があるし、ローカルトレーニングプロセスの集中的な制御の欠如は、モデル更新に対する悪意のある操作の影響を受けやすいグローバルモデルを残している。
ワンサーバFL設定の下で両方の問題に対処しようとする現在のソリューションは、以下の側面で不足している。
1) 高度な攻撃(例えば、個別更新の基準のチェックなど)に対して不十分な簡易な妥当性確認のために設計された。
2) より複雑なロバストな集約アルゴリズムに対する部分的なプライバシリーク(例えば、マルチスクラムではモデル更新間の距離がリークされる)。
本研究では,より高度なロバストなアグリゲーションを実現するためには,ユーザ情報量の最小化を図った,新たなセキュリティ概念であるアグリゲートプライバシを,ユーザ更新の集計統計の形で形式化する。
我々は、Lagrange符号化計算と分散ゼロ知識証明を利用した汎用フレームワークPriRoAggを開発し、集約されたプライバシを満たすとともに、幅広いロバストな集約アルゴリズムを実行する。
PriRoAggの具体的なインスタンス化として、最先端のロバストアルゴリズムに基づく2つのセキュアでロバストなプロトコルを構築し、セキュリティと複雑性に関する完全な理論的分析を行う。
これらのプロトコルに対して大規模な実験を行い、様々なモデルの整合性攻撃に対する頑健さと、ベースラインに対する効率上の優位性を実証した。
関連論文リスト
- Pseudo-Probability Unlearning: Towards Efficient and Privacy-Preserving Machine Unlearning [59.29849532966454]
本稿では,PseudoProbability Unlearning (PPU)を提案する。
提案手法は,最先端の手法に比べて20%以上の誤りを忘れる改善を実現している。
論文 参考訳(メタデータ) (2024-11-04T21:27:06Z) - Immersion and Invariance-based Coding for Privacy-Preserving Federated
Learning [1.5989047000011911]
協調分散学習におけるプライバシ保護手法として,フェデレートラーニング(FL)が登場している。
制御理論から差分プライバシーとシステム浸漬ツールを組み合わせたプライバシー保護FLフレームワークを提案する。
提案手法は,局所モデルパラメータとグローバルモデルパラメータの両方に対して,任意のレベルの差分プライバシを提供するように調整可能であることを実証する。
論文 参考訳(メタデータ) (2024-09-25T15:04:42Z) - Privacy Backdoors: Enhancing Membership Inference through Poisoning Pre-trained Models [112.48136829374741]
本稿では、プライバシーバックドア攻撃という新たな脆弱性を明らかにします。
被害者がバックドアモデルに微調整を行った場合、トレーニングデータは通常のモデルに微調整された場合よりも大幅に高い速度でリークされる。
我々の発見は、機械学習コミュニティにおける重要なプライバシー上の懸念を浮き彫りにし、オープンソースの事前訓練モデルの使用における安全性プロトコルの再評価を求めている。
論文 参考訳(メタデータ) (2024-04-01T16:50:54Z) - Privacy-Preserving Distributed Learning for Residential Short-Term Load
Forecasting [11.185176107646956]
電力システムの負荷データは、住宅ユーザの日常のルーチンを不注意に明らかにし、彼らの財産のセキュリティにリスクを及ぼす可能性がある。
我々はマルコフスイッチ方式の分散学習フレームワークを導入し、その収束は厳密な理論的解析によって実証される。
実世界の電力系統負荷データを用いたケーススタディにより,提案アルゴリズムの有効性を検証した。
論文 参考訳(メタデータ) (2024-02-02T16:39:08Z) - Enhancing Multiple Reliability Measures via Nuisance-extended
Information Bottleneck [77.37409441129995]
トレーニングデータに制限がある現実的なシナリオでは、データ内の多くの予測信号は、データ取得のバイアスからより多く得る。
我々は,相互情報制約の下で,より広い範囲の摂動をカバーできる敵の脅威モデルを考える。
そこで本研究では,その目的を実現するためのオートエンコーダベーストレーニングと,提案したハイブリッド識別世代学習を促進するための実用的なエンコーダ設計を提案する。
論文 参考訳(メタデータ) (2023-03-24T16:03:21Z) - ScionFL: Efficient and Robust Secure Quantized Aggregation [36.668162197302365]
我々は,フェデレートラーニングのための最初のセキュアアグリゲーションフレームワークであるScionFLを紹介する。
量子化された入力で効率的に動作し、同時に悪意のあるクライアントに対して堅牢性を提供する。
クライアントのオーバーヘッドがなく、サーバのオーバーヘッドも緩やかなため、標準的なFLベンチマークに匹敵する精度が得られます。
論文 参考訳(メタデータ) (2022-10-13T21:46:55Z) - PRECAD: Privacy-Preserving and Robust Federated Learning via
Crypto-Aided Differential Privacy [14.678119872268198]
フェデレートラーニング(FL)は、複数の参加するクライアントがデータセットをローカルに保持し、モデル更新のみを交換することで、機械学習モデルを協調的にトレーニングすることを可能にする。
既存のFLプロトコルの設計は、データのプライバシやモデルの堅牢性を損なうような攻撃に対して脆弱であることが示されている。
我々はPreCADと呼ばれるフレームワークを開発し、同時に差分プライバシー(DP)を実現し、暗号の助けを借りてモデル中毒攻撃に対する堅牢性を高める。
論文 参考訳(メタデータ) (2021-10-22T04:08:42Z) - RoFL: Attestable Robustness for Secure Federated Learning [59.63865074749391]
フェデレートラーニング(Federated Learning)により、多数のクライアントが、プライベートデータを共有することなく、ジョイントモデルをトレーニングできる。
クライアントのアップデートの機密性を保証するため、フェデレートラーニングシステムはセキュアなアグリゲーションを採用している。
悪意のあるクライアントに対する堅牢性を向上させるセキュアなフェデレート学習システムであるRoFLを提案する。
論文 参考訳(メタデータ) (2021-07-07T15:42:49Z) - Privacy-preserving Traffic Flow Prediction: A Federated Learning
Approach [61.64006416975458]
本稿では,フェデレート学習に基づくGated Recurrent Unit Neural Network Algorithm (FedGRU) というプライバシ保護機械学習手法を提案する。
FedGRUは、現在の集中学習方法と異なり、安全なパラメータアグリゲーション機構を通じて、普遍的な学習モデルを更新する。
FedGRUの予測精度は、先進的なディープラーニングモデルよりも90.96%高い。
論文 参考訳(メタデータ) (2020-03-19T13:07:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。