On the Importance of Calibration in Semi-supervised Learning
- URL: http://arxiv.org/abs/2210.04783v1
- Date: Mon, 10 Oct 2022 15:41:44 GMT
- Title: On the Importance of Calibration in Semi-supervised Learning
- Authors: Charlotte Loh, Rumen Dangovski, Shivchander Sudalairaj, Seungwook Han,
Ligong Han, Leonid Karlinsky, Marin Soljacic and Akash Srivastava
- Abstract summary: State-of-the-art (SOTA) semi-supervised learning (SSL) methods have been highly successful in leveraging a mix of labeled and unlabeled data.
We introduce a family of new SSL models that optimize for calibration and demonstrate their effectiveness across standard vision benchmarks.
- Score: 13.859032326378188
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: State-of-the-art (SOTA) semi-supervised learning (SSL) methods have been
highly successful in leveraging a mix of labeled and unlabeled data by
combining techniques of consistency regularization and pseudo-labeling. During
pseudo-labeling, the model's predictions on unlabeled data are used for
training and thus, model calibration is important in mitigating confirmation
bias. Yet, many SOTA methods are optimized for model performance, with little
focus directed to improve model calibration. In this work, we empirically
demonstrate that model calibration is strongly correlated with model
performance and propose to improve calibration via approximate Bayesian
techniques. We introduce a family of new SSL models that optimizes for
calibration and demonstrate their effectiveness across standard vision
benchmarks of CIFAR-10, CIFAR-100 and ImageNet, giving up to 15.9% improvement
in test accuracy. Furthermore, we also demonstrate their effectiveness in
additional realistic and challenging problems, such as class-imbalanced
datasets and in photonics science.
Related papers
- Consistency Calibration: Improving Uncertainty Calibration via Consistency among Perturbed Neighbors [22.39558434131574]
We introduce the concept of consistency as an alternative perspective on model calibration.
We propose a post-hoc calibration method called Consistency (CC) which adjusts confidence based on the model's consistency across inputs.
We show that performing perturbations at the logit level significantly improves computational efficiency.
arXiv Detail & Related papers (2024-10-16T06:55:02Z) - Feature Clipping for Uncertainty Calibration [24.465567005078135]
Modern deep neural networks (DNNs) often suffer from overconfidence, leading to miscalibration.
We propose a novel post-hoc calibration method called feature clipping (FC) to address this issue.
FC involves clipping feature values to a specified threshold, effectively increasing entropy in high calibration error samples.
arXiv Detail & Related papers (2024-10-16T06:44:35Z) - Fill In The Gaps: Model Calibration and Generalization with Synthetic Data [2.89287673224661]
We propose a calibration method that incorporates synthetic data without compromising accuracy.
We derive the expected calibration error (ECE) bound using the Probably Approximately Correct (PAC) learning framework.
We observed an average up to 34% increase in accuracy and 33% decrease in ECE.
arXiv Detail & Related papers (2024-10-07T23:06:42Z) - Uncertainty Aware Learning for Language Model Alignment [97.36361196793929]
We propose uncertainty-aware learning (UAL) to improve the model alignment of different task scenarios.
We implement UAL in a simple fashion -- adaptively setting the label smoothing value of training according to the uncertainty of individual samples.
Experiments on widely used benchmarks demonstrate that our UAL significantly and consistently outperforms standard supervised fine-tuning.
arXiv Detail & Related papers (2024-06-07T11:37:45Z) - Calibrating Large Language Models with Sample Consistency [76.23956851098598]
We explore the potential of deriving confidence from the distribution of multiple randomly sampled model generations, via three measures of consistency.
Results show that consistency-based calibration methods outperform existing post-hoc approaches.
We offer practical guidance on choosing suitable consistency metrics for calibration, tailored to the characteristics of various LMs.
arXiv Detail & Related papers (2024-02-21T16:15:20Z) - On Task Performance and Model Calibration with Supervised and
Self-Ensembled In-Context Learning [71.44986275228747]
In-context learning (ICL) has become an efficient approach propelled by the recent advancements in large language models (LLMs)
However, both paradigms are prone to suffer from the critical problem of overconfidence (i.e., miscalibration)
arXiv Detail & Related papers (2023-12-21T11:55:10Z) - On the Calibration of Large Language Models and Alignment [63.605099174744865]
Confidence calibration serves as a crucial tool for gauging the reliability of deep models.
We conduct a systematic examination of the calibration of aligned language models throughout the entire construction process.
Our work sheds light on whether popular LLMs are well-calibrated and how the training process influences model calibration.
arXiv Detail & Related papers (2023-11-22T08:57:55Z) - Adaptive Certified Training: Towards Better Accuracy-Robustness
Tradeoffs [17.46692880231195]
We propose a novel certified training method based on a key insight that training with adaptive certified radii helps to improve the accuracy and robustness of the model.
We demonstrate the effectiveness of the proposed method on MNIST, CIFAR-10, and TinyImageNet datasets.
arXiv Detail & Related papers (2023-07-24T18:59:46Z) - On Calibrating Semantic Segmentation Models: Analyses and An Algorithm [51.85289816613351]
We study the problem of semantic segmentation calibration.
Model capacity, crop size, multi-scale testing, and prediction correctness have impact on calibration.
We propose a simple, unifying, and effective approach, namely selective scaling.
arXiv Detail & Related papers (2022-12-22T22:05:16Z) - On the Calibration of Pre-trained Language Models using Mixup Guided by
Area Under the Margin and Saliency [47.90235939359225]
We propose a novel mixup strategy for pre-trained language models that improves model calibration further.
Our method achieves the lowest expected calibration error compared to strong baselines on both in-domain and out-of-domain test samples.
arXiv Detail & Related papers (2022-03-14T23:45:08Z) - Combining Ensembles and Data Augmentation can Harm your Calibration [33.94335246681807]
We show a surprising pathology: combining ensembles and data augmentation can harm model calibration.
We propose a simple correction, achieving the best of both worlds with significant accuracy and calibration gains over using only ensembles or data augmentation individually.
arXiv Detail & Related papers (2020-10-19T21:25:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.