論文の概要: Data types as a more ergonomic frontend for Grammar-Guided Genetic
Programming
- arxiv url: http://arxiv.org/abs/2210.04826v1
- Date: Mon, 10 Oct 2022 16:38:16 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-11 14:50:56.192557
- Title: Data types as a more ergonomic frontend for Grammar-Guided Genetic
Programming
- Title(参考訳): 文法誘導型遺伝的プログラミングのためのよりエルゴノミックなフロントエンドとしてのデータ型
- Authors: Guilherme Espada, Leon Ingelse, Paulo Canelas, Pedro Barbosa, Alcides
Fonseca
- Abstract要約: 本稿では,フレームワークのホスト言語に内在するドメイン特化言語として文法を組み込むことを提案する。
このアプローチはホスト言語型システムを使用しながらBNFやEBNFと同じ表現力を持つ。
木生成システムのユーザ定義オーバーライドであるメタハンドラーも提示する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Genetic Programming (GP) is an heuristic method that can be applied to many
Machine Learning, Optimization and Engineering problems. In particular, it has
been widely used in Software Engineering for Test-case generation, Program
Synthesis and Improvement of Software (GI).
Grammar-Guided Genetic Programming (GGGP) approaches allow the user to refine
the domain of valid program solutions. Backus Normal Form is the most popular
interface for describing Context-Free Grammars (CFG) for GGGP. BNF and its
derivatives have the disadvantage of interleaving the grammar language and the
target language of the program.
We propose to embed the grammar as an internal Domain-Specific Language in
the host language of the framework. This approach has the same expressive power
as BNF and EBNF while using the host language type-system to take advantage of
all the existing tooling: linters, formatters, type-checkers, autocomplete, and
legacy code support. These tools have a practical utility in designing software
in general, and GP systems in particular.
We also present Meta-Handlers, user-defined overrides of the tree-generation
system. This technique extends our object-oriented encoding with more
practicability and expressive power than existing CFG approaches, achieving the
same expressive power of Attribute Grammars, but without the grammar vs target
language duality.
Furthermore, we evidence that this approach is feasible, showing an example
Python implementation as proof. We also compare our approach against textual
BNF-representations w.r.t. expressive power and ergonomics. These advantages do
not come at the cost of performance, as shown by our empirical evaluation on 5
benchmarks of our example implementation against PonyGE2. We conclude that our
approach has better ergonomics with the same expressive power and performance
of textual BNF-based grammar encodings.
- Abstract(参考訳): 遺伝的プログラミング(GP)は、多くの機械学習、最適化、エンジニアリング問題に適用可能なヒューリスティックな手法である。
特に、テストケース生成のためのソフトウェアエンジニアリング、プログラム合成およびソフトウェアの改善(GI)で広く使われている。
Grammar-Guided Genetic Programming (GGGP)アプローチにより、ユーザは有効なプログラムソリューションのドメインを洗練できる。
Backus Normal Form は GGGP 用の Context-Free Grammars (CFG) を記述するための最も一般的なインタフェースである。
BNFとその誘導体は、プログラムの文法言語とターゲット言語をインターリーブする欠点がある。
我々は、文法をフレームワークのホスト言語に内部ドメイン固有言語として組み込むことを提案する。
このアプローチはbnfやebnfと同じ表現力を持ち、ホスト言語型システムを使用して既存のツール、linter、formters、type-checker、autocomplete、レガシーコードのサポートをすべて活用している。
これらのツールはソフトウェア全般、特にGPシステムの設計において実用性を持っている。
木生成システムのユーザ定義オーバーライドであるメタハンドラーも提示する。
この手法は、既存のCFGアプローチよりも実践性が高く表現力の高いオブジェクト指向符号化を拡張し、Attribute Grammarsと同じ表現力を実現するが、文法対ターゲット言語双対性はない。
さらに、このアプローチが実現可能であることを証明し、python実装の例を証明した。
また,表現力とエルゴノミクスのテキストBNF表現に対するアプローチを比較した。
これらの利点は、PonyGE2に対するサンプル実装の5つのベンチマークの実証的な評価で示されているように、パフォーマンスのコストでは得られない。
提案手法は,文章BNFに基づく文法符号化において,同じ表現力と性能のエルゴノミクスを持つ。
関連論文リスト
- CodeGRAG: Bridging the Gap between Natural Language and Programming Language via Graphical Retrieval Augmented Generation [58.84212778960507]
我々は,LLMの性能を高めるため,グラフィカル検索拡張コード生成フレームワークであるCodeGRAGを提案する。
CodeGRAGは、制御フローとデータフローに基づいて、コードブロックのグラフィカルなビューを構築し、プログラミング言語と自然言語のギャップを埋める。
ハードメタグラフプロンプト、ソフトプロンプト技術、事前訓練されたGNN専門家の目的の有効性を検証するために、C++言語とピソン言語の両方を含む4つのデータセットで様々な実験と改善が行われた。
論文 参考訳(メタデータ) (2024-05-03T02:48:55Z) - Constrained Decoding for Fill-in-the-Middle Code Language Models via Efficient Left and Right Quotienting of Context-Sensitive Grammars [11.279507894576213]
本稿では,構文的に正しくないコードの早期拒絶を可能にするインクリメンタルな合成に寄与する。
文脈自由文法の左右商を許容するために、Earey解析アルゴリズムを拡張した。
論文 参考訳(メタデータ) (2024-02-28T02:12:47Z) - Compositional Program Generation for Few-Shot Systematic Generalization [59.57656559816271]
コンポジションプログラムジェネレータ(CPG)と呼ばれるニューロシンボリックアーキテクチャに関する研究
CPGには3つの重要な特徴がある: 文法規則の形で、テキストモジュラリティ、テキストコンポジション、テキストタストラクションである。
SCAN と COGS のベンチマークでは,SCAN の14例と COGS の22例を使用して,完全な一般化を実現している。
論文 参考訳(メタデータ) (2023-09-28T14:33:20Z) - AI2: The next leap toward native language based and explainable machine
learning framework [1.827510863075184]
提案されたフレームワークは、AI$2$と名付けられ、自然言語インターフェースを使用して、非スペシャリストが機械学習アルゴリズムの恩恵を受けることができる。
AI$2$フレームワークの主なコントリビューションは、ユーザーが機械学習アルゴリズムを英語で呼び出すことで、インターフェースの使用が容易になる。
もうひとつのコントリビューションは、データの適切な記述とロードを支援する前処理モジュールだ。
論文 参考訳(メタデータ) (2023-01-09T14:48:35Z) - GraphQ IR: Unifying Semantic Parsing of Graph Query Language with
Intermediate Representation [91.27083732371453]
本稿では,グラフクエリ言語,すなわちGraphQ IRに対する統合中間表現(IR)を提案する。
セマンティックギャップをブリッジするIRの自然言語のような表現と、グラフ構造を維持するための正式に定義された構文によって、ニューラルネットワークによるセマンティックパーシングは、ユーザクエリをより効果的にGraphQ IRに変換することができる。
我々のアプローチは、KQA Pro、Overnight、MetaQAにおける最先端のパフォーマンスを一貫して達成できます。
論文 参考訳(メタデータ) (2022-05-24T13:59:53Z) - CUGE: A Chinese Language Understanding and Generation Evaluation
Benchmark [144.05723617401674]
汎用言語インテリジェンス評価は、自然言語処理の長年の目標である。
汎用言語インテリジェンス評価には,ベンチマーク自体が包括的で体系的なものである必要がある,と我々は主張する。
以下に示す機能を備えた中国語理解・生成評価ベンチマークであるCUGEを提案する。
論文 参考訳(メタデータ) (2021-12-27T11:08:58Z) - Learning to Synthesize Data for Semantic Parsing [57.190817162674875]
本稿では,プログラムの構成をモデル化し,プログラムを発話にマップする生成モデルを提案する。
PCFGと事前学習されたBARTの簡易性により,既存のデータから効率的に生成モデルを学習することができる。
GeoQuery と Spider の標準ベンチマークで解析する text-to-Query の in-domain と out-of-domain の両方で、この手法を評価します。
論文 参考訳(メタデータ) (2021-04-12T21:24:02Z) - Infusing Finetuning with Semantic Dependencies [62.37697048781823]
シンタックスとは異なり、セマンティクスは今日の事前訓練モデルによって表面化されないことを示す。
次に、畳み込みグラフエンコーダを使用して、タスク固有の微調整にセマンティック解析を明示的に組み込む。
論文 参考訳(メタデータ) (2020-12-10T01:27:24Z) - Code Building Genetic Programming [0.0]
我々は、コード構築遺伝プログラミング(CBGP)を、これを実現するためのフレームワークとして紹介する。
CBGPは、ホスト言語のソースコードに実行または変換できる計算グラフを生成する。
論文 参考訳(メタデータ) (2020-08-09T04:33:04Z) - ProGraML: Graph-based Deep Learning for Program Optimization and
Analysis [16.520971531754018]
本稿では,機械学習のためのグラフベースのプログラム表現であるProGraMLを紹介する。
ProGraMLは平均94.0F1スコアを獲得し、最先端のアプローチを著しく上回っている。
そして、我々のアプローチを2つのハイレベルなタスク - 不均一なデバイスマッピングとプログラム分類 - に適用し、その両方で新しい最先端のパフォーマンスを設定します。
論文 参考訳(メタデータ) (2020-03-23T20:27:00Z) - Traduction des Grammaires Cat\'egorielles de Lambek dans les Grammaires
Cat\'egorielles Abstraites [0.0]
このインターンシップレポートは、すべてのランベク文法が抽象カテゴリー文法(ACG)で完全にではなく効率的に表現できることを示すものである。
主な考え方は、LGの型書き換えシステムを文脈自由文法(CFG)に変換し、導入規則と除去規則を消去し、カット規則が十分であるように十分な公理を生成することである。
基礎となるアルゴリズムは完全には実装されなかったが、この証明は自然言語処理におけるACGの関連性を支持する別の議論を提供する。
論文 参考訳(メタデータ) (2020-01-23T18:23:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。