論文の概要: Guided Tensor Lifting
- arxiv url: http://arxiv.org/abs/2504.19705v1
- Date: Mon, 28 Apr 2025 12:00:10 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:54.414725
- Title: Guided Tensor Lifting
- Title(参考訳): ガイド付きテンソルリフティング
- Authors: Yixuan Li, José Wesley de Souza Magalhães, Alexander Brauckmann, Michael F. P. O'Boyle, Elizabeth Polgreen,
- Abstract要約: 機械学習のためのドメイン固有言語(s)は、機械学習ワークロードのスピードと効率に革命をもたらしている。
これらの機能を利用するには、ユーザはまず、現在記述されている言語からレガシーコードを新しいDSLに変換する必要があります。
これらのDSLにコードを自動的に持ち込むプロセスは、プログラム合成を解決策として提案する最近のいくつかの研究によって特定されている。
- 参考スコア(独自算出の注目度): 54.10411390218929
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Domain-specific languages (DSLs) for machine learning are revolutionizing the speed and efficiency of machine learning workloads as they enable users easy access to high-performance compiler optimizations and accelerators. However, to take advantage of these capabilities, a user must first translate their legacy code from the language it is currently written in, into the new DSL. The process of automatically lifting code into these DSLs has been identified by several recent works, which propose program synthesis as a solution. However, synthesis is expensive and struggles to scale without carefully designed and hard-wired heuristics. In this paper, we present an approach for lifting that combines an enumerative synthesis approach with a Large Language Model used to automatically learn the domain-specific heuristics for program lifting, in the form of a probabilistic grammar. Our approach outperforms the state-of-the-art tools in this area, despite only using learned heuristics.
- Abstract(参考訳): 機械学習のためのドメイン固有言語(DSL)は、機械学習のワークロードのスピードと効率に革命をもたらしている。
しかし、これらの機能を利用するには、ユーザはまず、現在記述されている言語から新しいDSLに、レガシーコードを変換する必要があります。
これらのDSLにコードを自動的に持ち込むプロセスは、プログラム合成を解決策として提案する最近のいくつかの研究によって特定されている。
しかし、合成は高価であり、慎重に設計されハードワイヤのヒューリスティックスなしではスケールが困難である。
本稿では,列挙型合成手法と大規模言語モデルを組み合わせることで,プログラムリフトのためのドメイン固有ヒューリスティックを確率論的文法の形で自動学習する手法を提案する。
我々の手法は、学習したヒューリスティックスしか使わずに、この分野の最先端のツールよりも優れています。
関連論文リスト
- MIREncoder: Multi-modal IR-based Pretrained Embeddings for Performance Optimizations [6.919817502555546]
本稿では,Multi-modal IRベースのオートエンコーダであるMIREncoderを提案する。
マルチモーダルなアプローチにより、コンパイル可能なプログラムからより優れた特徴を抽出できる。
評価の結果,提案手法はオーバヘッドを低減しつつ,技術状況より優れることが示された。
論文 参考訳(メタデータ) (2024-07-02T13:00:19Z) - Meaning-Typed Programming: Language-level Abstractions and Runtime for GenAI Applications [8.308424118055981]
ソフトウェアは、論理コードから、生成的AIとアプリケーション機能に大規模言語モデル(LLM)を活用する神経統合アプリケーションへと、急速に進化している。
本稿では,神経統合型アプリケーションの作成を簡略化する新しい手法として,意味型プログラミング(MTP)を提案する。
論文 参考訳(メタデータ) (2024-05-14T21:12:01Z) - On-the-Fly Syntax Highlighting: Generalisation and Speed-ups [2.208443815105053]
オンザフライ構文強調は、視覚二次表記値を言語派生のそれぞれの文字と素早く関連付けるタスクである。
スピード制約はツールのユーザビリティを保証するために不可欠であり、オンラインソースコードにアクセスするエンドユーザの応答性を示す。
コードの理解力を高めるためには、正確なハイライトを達成することが重要です。
このようなリゾルバの開発コストに対処することは、多くのプログラミング言語のバージョンを考えると必須である。
論文 参考訳(メタデータ) (2024-02-13T19:43:22Z) - Engineering A Large Language Model From Scratch [0.0]
AtinukeはTransformerベースのニューラルネットワークで、さまざまな言語タスクのパフォーマンスを最適化する。
特徴を抽出し、複雑なマッピングを学習することで、人間のような言語をエミュレートすることができる。
システムは、解釈可能で堅牢なまま、自然言語タスクの最先端の結果を達成する。
論文 参考訳(メタデータ) (2024-01-30T04:29:48Z) - LILO: Learning Interpretable Libraries by Compressing and Documenting Code [71.55208585024198]
LILOは、反復的に合成、圧縮、文書化を行う、ニューロシンボリックなフレームワークである。
LILOは、LLM誘導プログラム合成と、Stitchから自動化された最近のアルゴリズムの進歩を組み合わせたものである。
LILOのシンセサイザーが学習した抽象化を解釈し、デプロイするのを手助けすることで、AutoDocがパフォーマンスを向上させることが分かりました。
論文 参考訳(メタデータ) (2023-10-30T17:55:02Z) - Using Document Similarity Methods to create Parallel Datasets for Code
Translation [60.36392618065203]
あるプログラミング言語から別のプログラミング言語へのソースコードの翻訳は、重要で時間を要する作業です。
本稿では、文書類似性手法を用いて、ノイズの多い並列データセットを作成することを提案する。
これらのモデルは、妥当なレベルのノイズに対して、地上の真実に基づいて訓練されたモデルと相容れない性能を示す。
論文 参考訳(メタデータ) (2021-10-11T17:07:58Z) - Leveraging Language to Learn Program Abstractions and Search Heuristics [66.28391181268645]
LAPS(Language for Abstraction and Program Search)は、自然言語アノテーションを用いて、ライブラリとニューラルネットワークによる合成のための検索モデルの共同学習をガイドする手法である。
最先端のライブラリ学習システム(DreamCoder)に統合されると、LAPSは高品質なライブラリを生成し、検索効率と一般化を改善する。
論文 参考訳(メタデータ) (2021-06-18T15:08:47Z) - Learning Adaptive Language Interfaces through Decomposition [89.21937539950966]
本稿では,分解による新しいハイレベルな抽象化を学習するニューラルセマンティック解析システムを提案する。
ユーザは、新しい振る舞いを記述する高レベルな発話を低レベルなステップに分解することで、対話的にシステムを教える。
論文 参考訳(メタデータ) (2020-10-11T08:27:07Z) - Instead of Rewriting Foreign Code for Machine Learning, Automatically
Synthesize Fast Gradients [6.09170287691728]
本稿では,LLVMコンパイラフレームワーク用の高性能自動微分(AD)コンパイラプラグインであるEnzymeを提案する。
EnzymeはLLVM中間表現(IR)をターゲットにした任意の言語で記述されたプログラムの勾配を合成する
MicrosoftのADBenchを含む機械学習に焦点を当てたベンチマークスイートでは、最適化されたIR上のADは、IR上のAD上の4.5倍の幾何平均スピードアップを達成する。
論文 参考訳(メタデータ) (2020-10-04T22:32:51Z) - Synthetic Datasets for Neural Program Synthesis [66.20924952964117]
本稿では,プログラムと仕様の両方で合成データ分布のバイアスを制御し,評価するための新しい手法を提案する。
そこで我々は,Karel DSLと小さなCalculator DSLを用いて,これらの分布上でのディープネットワークのトレーニングにより,分散一般化性能が向上することが実証された。
論文 参考訳(メタデータ) (2019-12-27T21:28:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。