論文の概要: Multi-Modal Fusion by Meta-Initialization
- arxiv url: http://arxiv.org/abs/2210.04843v1
- Date: Mon, 10 Oct 2022 17:00:58 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-11 15:43:11.594842
- Title: Multi-Modal Fusion by Meta-Initialization
- Title(参考訳): メタ初期化によるマルチモーダル核融合
- Authors: Matthew T. Jackson, Shreshth A. Malik, Michael T. Matthews, Yousuf
Mohamed-Ahmed
- Abstract要約: モデル非依存メタラーニングアルゴリズム(MAML)の拡張を提案する。
これにより、モデルが補助情報とタスクエクスペリエンスを使って適応することが可能になる。
FuMIは、MAMLのようなユニモーダルベースラインを数発で上回っている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: When experience is scarce, models may have insufficient information to adapt
to a new task. In this case, auxiliary information - such as a textual
description of the task - can enable improved task inference and adaptation. In
this work, we propose an extension to the Model-Agnostic Meta-Learning
algorithm (MAML), which allows the model to adapt using auxiliary information
as well as task experience. Our method, Fusion by Meta-Initialization (FuMI),
conditions the model initialization on auxiliary information using a
hypernetwork, rather than learning a single, task-agnostic initialization.
Furthermore, motivated by the shortcomings of existing multi-modal few-shot
learning benchmarks, we constructed iNat-Anim - a large-scale image
classification dataset with succinct and visually pertinent textual class
descriptions. On iNat-Anim, FuMI significantly outperforms uni-modal baselines
such as MAML in the few-shot regime. The code for this project and a dataset
exploration tool for iNat-Anim are publicly available at
https://github.com/s-a-malik/multi-few .
- Abstract(参考訳): 経験が乏しい場合、新しいタスクに適応するための情報が不十分な場合があります。
この場合、タスクのテキスト記述のような補助情報は、タスクの推論と適応の改善を可能にする。
本研究では,モデルに依存しないメタラーニングアルゴリズム(MAML)の拡張を提案する。
メタ初期化による融合(fumi)は,タスクに依存しない単一の初期化を学習するのではなく,ハイパーネットワークを用いた補助情報によるモデル初期化を条件とする。
さらに、既存のマルチモーダル数ショット学習ベンチマークの欠点から、簡潔で視覚的に関連するテキストクラス記述を備えた大規模画像分類データセットであるiNat-Animを構築した。
iNat-Animでは、FMIがMAMLのような単調なベースラインを数発で上回っている。
このプロジェクトのコードとiNat-Animのデータセット探索ツールがhttps://github.com/s-a-malik/multi-fewで公開されている。
関連論文リスト
- Membership Inference Attacks against Large Vision-Language Models [40.996912464828696]
大規模視覚言語モデル(VLLM)は、様々なアプリケーションシナリオにわたるマルチモーダルタスクを処理するための有望な能力を示す。
彼らの出現は、プライベート写真や医療記録などの機密情報を含む可能性があることを考えると、重要なデータセキュリティ上の懸念も引き起こす。
VLLMで不適切な使用データを検出することは、致命的かつ未解決な問題である。
論文 参考訳(メタデータ) (2024-11-05T08:35:08Z) - Web-Scale Visual Entity Recognition: An LLM-Driven Data Approach [56.55633052479446]
Webスケールのビジュアルエンティティ認識は、クリーンで大規模なトレーニングデータがないため、重大な課題を呈している。
本稿では,ラベル検証,メタデータ生成,合理性説明に多モーダル大言語モデル(LLM)を活用することによって,そのようなデータセットをキュレートする新しい手法を提案する。
実験により、この自動キュレートされたデータに基づいてトレーニングされたモデルは、Webスケールの視覚的エンティティ認識タスクで最先端のパフォーマンスを達成することが示された。
論文 参考訳(メタデータ) (2024-10-31T06:55:24Z) - RA-BLIP: Multimodal Adaptive Retrieval-Augmented Bootstrapping Language-Image Pre-training [55.54020926284334]
近年,MLLM (Multimodal Large Language Models) が注目されている。
検索拡張技術はLLMとMLLMの両方に有効なプラグインであることが証明されている。
本研究では,MLLMの新しい検索支援フレームワークであるRA-BLIP(Retrieval-Augmented Bootstrapping Language-Image Pre-training)を提案する。
論文 参考訳(メタデータ) (2024-10-18T03:45:19Z) - Improve Meta-learning for Few-Shot Text Classification with All You Can Acquire from the Tasks [10.556477506959888]
既存の手法は、しばしばサポートセットのサンプルから正確なクラスプロトタイプを描くのに困難に遭遇する。
近年のアプローチでは、外部知識や事前訓練された言語モデルを組み込んでデータを拡張しようとするが、追加のリソースが必要になる。
本稿では,タスク自体の情報を適切に活用した新しいソリューションを提案する。
論文 参考訳(メタデータ) (2024-10-14T12:47:11Z) - SELF-GUIDE: Better Task-Specific Instruction Following via Self-Synthetic Finetuning [70.21358720599821]
大規模言語モデル(LLM)は、適切な自然言語プロンプトを提供する際に、多様なタスクを解決するという約束を持っている。
学生LLMからタスク固有の入出力ペアを合成する多段階メカニズムであるSELF-GUIDEを提案する。
ベンチマークの指標から,分類タスクに約15%,生成タスクに18%の絶対的な改善を報告した。
論文 参考訳(メタデータ) (2024-07-16T04:41:58Z) - Fine-Grained Scene Image Classification with Modality-Agnostic Adapter [8.801601759337006]
MAA(Modality-Agnostic Adapter)と呼ばれる新しいマルチモーダル特徴融合手法を提案する。
我々は分散のモーダル差を排除し、その後、意味レベルの特徴融合のためにモダリティに依存しないトランスフォーマーエンコーダを使用する。
実験により,MAAは従来の手法と同一のモーダル性を適用することで,ベンチマーク上での最先端の結果が得られることを示した。
論文 参考訳(メタデータ) (2024-07-03T02:57:14Z) - 3FM: Multi-modal Meta-learning for Federated Tasks [2.117841684082203]
マルチモーダルなフェデレーションタスクに特化して設計されたメタラーニングフレームワークを提案する。
当社のアプローチは,新たなモダリティに曝露した場合に,フェデレーションモデルによる堅牢な適応を可能にする必要性に起因している。
提案アルゴリズムは,欠落したモダリティシナリオのサブセットにおいて,ベースラインよりも優れた性能を実現することを示す。
論文 参考訳(メタデータ) (2023-12-15T20:03:24Z) - Utilising a Large Language Model to Annotate Subject Metadata: A Case
Study in an Australian National Research Data Catalogue [18.325675189960833]
オープンで再現可能な研究をサポートするために、研究のために利用可能なデータセットが急速に増えている。
データセットの可用性が向上するにつれて、それらの発見と再利用のための品質メタデータを持つことがより重要になる。
本稿では,LLMに基づくインコンテキスト学習を通じて,大規模言語モデル(LLM)を用いて,主題メタデータのコスト効率のよいアノテーションを提案する。
論文 参考訳(メタデータ) (2023-10-17T14:52:33Z) - Multi-View Class Incremental Learning [57.14644913531313]
マルチビュー学習(MVL)は、下流タスクのパフォーマンスを改善するためにデータセットの複数の視点から情報を統合することで大きな成功を収めている。
本稿では,複数視点クラスインクリメンタルラーニング(MVCIL)と呼ばれる新しいパラダイムについて考察する。
論文 参考訳(メタデータ) (2023-06-16T08:13:41Z) - Improving Meta-learning for Low-resource Text Classification and
Generation via Memory Imitation [87.98063273826702]
本稿では,メモリ模倣メタラーニング(MemIML)手法を提案する。
本手法の有効性を証明するために理論的解析を行った。
論文 参考訳(メタデータ) (2022-03-22T12:41:55Z) - Single-Modal Entropy based Active Learning for Visual Question Answering [75.1682163844354]
視覚質問応答(VQA)のマルチモーダル設定におけるアクティブラーニングに対処する
マルチモーダルな入力,画像,質問を考慮し,有効サンプル取得のための新しい手法を提案する。
私たちの新しいアイデアは、実装が簡単で、コスト効率が高く、他のマルチモーダルタスクにも容易に適応できます。
論文 参考訳(メタデータ) (2021-10-21T05:38:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。