PoGaIN: Poisson-Gaussian Image Noise Modeling from Paired Samples
- URL: http://arxiv.org/abs/2210.04866v1
- Date: Mon, 10 Oct 2022 17:34:49 GMT
- Title: PoGaIN: Poisson-Gaussian Image Noise Modeling from Paired Samples
- Authors: Nicolas B\"ahler, Majed El Helou, \'Etienne Objois, Kaan Okumu\c{s},
and Sabine S\"usstrunk
- Abstract summary: We derive a novel, cumulant-based, approach for Poisson-Gaussian noise modeling from paired image samples.
We show its improved performance over different baselines with special emphasis on MSE, effect of outliers, image dependence and bias.
- Score: 9.22047303381213
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Image noise can often be accurately fitted to a Poisson-Gaussian
distribution. However, estimating the distribution parameters from only a noisy
image is a challenging task. Here, we study the case when paired noisy and
noise-free samples are available. No method is currently available to exploit
the noise-free information, which holds the promise of achieving more accurate
estimates. To fill this gap, we derive a novel, cumulant-based, approach for
Poisson-Gaussian noise modeling from paired image samples. We show its improved
performance over different baselines with special emphasis on MSE, effect of
outliers, image dependence and bias, and additionally derive the log-likelihood
function for further insight and discuss real-world applicability.
Related papers
- Diffusion Gaussian Mixture Audio Denoise [23.760755498636943]
We propose a DiffGMM model, a denoising model based on the diffusion and Gaussian mixture models.
Given a noisy audio signal, we first apply a 1D-U-Net to extract features and train linear layers to estimate parameters for the Gaussian mixture model.
The noisy signal is continuously subtracted from the estimated noise to output clean audio signals.
arXiv Detail & Related papers (2024-06-13T14:18:10Z) - Blue noise for diffusion models [50.99852321110366]
We introduce a novel and general class of diffusion models taking correlated noise within and across images into account.
Our framework allows introducing correlation across images within a single mini-batch to improve gradient flow.
We perform both qualitative and quantitative evaluations on a variety of datasets using our method.
arXiv Detail & Related papers (2024-02-07T14:59:25Z) - Optimizing the Noise in Self-Supervised Learning: from Importance
Sampling to Noise-Contrastive Estimation [80.07065346699005]
It is widely assumed that the optimal noise distribution should be made equal to the data distribution, as in Generative Adversarial Networks (GANs)
We turn to Noise-Contrastive Estimation which grounds this self-supervised task as an estimation problem of an energy-based model of the data.
We soberly conclude that the optimal noise may be hard to sample from, and the gain in efficiency can be modest compared to choosing the noise distribution equal to the data's.
arXiv Detail & Related papers (2023-01-23T19:57:58Z) - Representing Noisy Image Without Denoising [91.73819173191076]
Fractional-order Moments in Radon space (FMR) is designed to derive robust representation directly from noisy images.
Unlike earlier integer-order methods, our work is a more generic design taking such classical methods as special cases.
arXiv Detail & Related papers (2023-01-18T10:13:29Z) - Target Aware Poisson-Gaussian Noise Parameters Estimation from Noisy
Images [0.0]
We use a Poisson-Gaussian noise model for the raw-images captured by the sensor.
We propose two algorithms based on variance and cumulant statistics.
arXiv Detail & Related papers (2022-10-21T17:53:56Z) - SAR Despeckling using a Denoising Diffusion Probabilistic Model [52.25981472415249]
The presence of speckle degrades the image quality and adversely affects the performance of SAR image understanding applications.
We introduce SAR-DDPM, a denoising diffusion probabilistic model for SAR despeckling.
The proposed method achieves significant improvements in both quantitative and qualitative results over the state-of-the-art despeckling methods.
arXiv Detail & Related papers (2022-06-09T14:00:26Z) - Poisson2Sparse: Self-Supervised Poisson Denoising From a Single Image [34.27748767631027]
We present a novel self-supervised learning method for single-image denoising.
We approximate traditional iterative optimization algorithms for image denoising with a recurrent neural network.
Our method outperforms the state-of-the-art approaches in terms of PSNR and SSIM.
arXiv Detail & Related papers (2022-06-04T00:08:58Z) - The Optimal Noise in Noise-Contrastive Learning Is Not What You Think [80.07065346699005]
We show that deviating from this assumption can actually lead to better statistical estimators.
In particular, the optimal noise distribution is different from the data's and even from a different family.
arXiv Detail & Related papers (2022-03-02T13:59:20Z) - Noise Distribution Adaptive Self-Supervised Image Denoising using
Tweedie Distribution and Score Matching [29.97769511276935]
We show that Tweedie distributions play key roles in modern deep learning era, leading to a distribution independent self-supervised image denoising formula without clean reference images.
Specifically, by combining with the recent Noise2Score self-supervised image denoising approach and the saddle point approximation of Tweedie distribution, we can provide a general closed-form denoising formula.
We show that the proposed method can accurately estimate noise models and parameters, and provide the state-of-the-art self-supervised image denoising performance in the benchmark dataset and real-world dataset.
arXiv Detail & Related papers (2021-12-05T04:36:08Z) - Statistical Analysis of Signal-Dependent Noise: Application in Blind
Localization of Image Splicing Forgery [20.533239616846874]
In this work, we apply signal-dependent noise (SDN) to splicing localization tasks.
By building a maximum a posterior Markov random field (MAP-MRF) framework, we exploit the likelihood of noise to reveal the alien region of spliced objects.
Experimental results demonstrate that our method is effective and provides a comparative localization performance.
arXiv Detail & Related papers (2020-10-30T11:53:53Z) - Variational Denoising Network: Toward Blind Noise Modeling and Removal [59.36166491196973]
Blind image denoising is an important yet very challenging problem in computer vision.
We propose a new variational inference method, which integrates both noise estimation and image denoising.
arXiv Detail & Related papers (2019-08-29T15:54:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.