On Explainability in AI-Solutions: A Cross-Domain Survey
- URL: http://arxiv.org/abs/2210.05173v1
- Date: Tue, 11 Oct 2022 06:21:47 GMT
- Title: On Explainability in AI-Solutions: A Cross-Domain Survey
- Authors: Simon Daniel Duque Anton, Daniel Schneider, Hans Dieter Schotten
- Abstract summary: In automatically deriving a system model, AI algorithms learn relations in data that are not detectable for humans.
The more complex a model, the more difficult it is for a human to understand the reasoning for the decisions.
This work provides an extensive survey of literature on this topic, which, to a large part, consists of other surveys.
- Score: 4.394025678691688
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Artificial Intelligence (AI) increasingly shows its potential to outperform
predicate logic algorithms and human control alike. In automatically deriving a
system model, AI algorithms learn relations in data that are not detectable for
humans. This great strength, however, also makes use of AI methods dubious. The
more complex a model, the more difficult it is for a human to understand the
reasoning for the decisions. As currently, fully automated AI algorithms are
sparse, every algorithm has to provide a reasoning for human operators. For
data engineers, metrics such as accuracy and sensitivity are sufficient.
However, if models are interacting with non-experts, explanations have to be
understandable. This work provides an extensive survey of literature on this
topic, which, to a large part, consists of other surveys. The findings are
mapped to ways of explaining decisions and reasons for explaining decisions. It
shows that the heterogeneity of reasons and methods of and for explainability
lead to individual explanatory frameworks.
Related papers
- Pangu-Agent: A Fine-Tunable Generalist Agent with Structured Reasoning [50.47568731994238]
Key method for creating Artificial Intelligence (AI) agents is Reinforcement Learning (RL)
This paper presents a general framework model for integrating and learning structured reasoning into AI agents' policies.
arXiv Detail & Related papers (2023-12-22T17:57:57Z) - Evaluating the Utility of Model Explanations for Model Development [54.23538543168767]
We evaluate whether explanations can improve human decision-making in practical scenarios of machine learning model development.
To our surprise, we did not find evidence of significant improvement on tasks when users were provided with any of the saliency maps.
These findings suggest caution regarding the usefulness and potential for misunderstanding in saliency-based explanations.
arXiv Detail & Related papers (2023-12-10T23:13:23Z) - Human-Centric Multimodal Machine Learning: Recent Advances and Testbed
on AI-based Recruitment [66.91538273487379]
There is a certain consensus about the need to develop AI applications with a Human-Centric approach.
Human-Centric Machine Learning needs to be developed based on four main requirements: (i) utility and social good; (ii) privacy and data ownership; (iii) transparency and accountability; and (iv) fairness in AI-driven decision-making processes.
We study how current multimodal algorithms based on heterogeneous sources of information are affected by sensitive elements and inner biases in the data.
arXiv Detail & Related papers (2023-02-13T16:44:44Z) - Towards Reconciling Usability and Usefulness of Explainable AI
Methodologies [2.715884199292287]
Black-box AI systems can lead to liability and accountability issues when they produce an incorrect decision.
Explainable AI (XAI) seeks to bridge the knowledge gap, between developers and end-users.
arXiv Detail & Related papers (2023-01-13T01:08:49Z) - Alterfactual Explanations -- The Relevance of Irrelevance for Explaining
AI Systems [0.9542023122304099]
We argue that in order to fully understand a decision, not only knowledge about relevant features is needed, but that the awareness of irrelevant information also highly contributes to the creation of a user's mental model of an AI system.
Our approach, which we call Alterfactual Explanations, is based on showing an alternative reality where irrelevant features of an AI's input are altered.
We show that alterfactual explanations are suited to convey an understanding of different aspects of the AI's reasoning than established counterfactual explanation methods.
arXiv Detail & Related papers (2022-07-19T16:20:37Z) - A User-Centred Framework for Explainable Artificial Intelligence in
Human-Robot Interaction [70.11080854486953]
We propose a user-centred framework for XAI that focuses on its social-interactive aspect.
The framework aims to provide a structure for interactive XAI solutions thought for non-expert users.
arXiv Detail & Related papers (2021-09-27T09:56:23Z) - Explainable Artificial Intelligence Approaches: A Survey [0.22940141855172028]
Lack of explainability of a decision from an Artificial Intelligence based "black box" system/model is a key stumbling block for adopting AI in high stakes applications.
We demonstrate popular Explainable Artificial Intelligence (XAI) methods with a mutual case study/task.
We analyze for competitive advantages from multiple perspectives.
We recommend paths towards responsible or human-centered AI using XAI as a medium.
arXiv Detail & Related papers (2021-01-23T06:15:34Z) - Does Explainable Artificial Intelligence Improve Human Decision-Making? [17.18994675838646]
We compare and evaluate objective human decision accuracy without AI (control), with an AI prediction (no explanation) and AI prediction with explanation.
We find any kind of AI prediction tends to improve user decision accuracy, but no conclusive evidence that explainable AI has a meaningful impact.
Our results indicate that, at least in some situations, the "why" information provided in explainable AI may not enhance user decision-making.
arXiv Detail & Related papers (2020-06-19T15:46:13Z) - Bias in Multimodal AI: Testbed for Fair Automatic Recruitment [73.85525896663371]
We study how current multimodal algorithms based on heterogeneous sources of information are affected by sensitive elements and inner biases in the data.
We train automatic recruitment algorithms using a set of multimodal synthetic profiles consciously scored with gender and racial biases.
Our methodology and results show how to generate fairer AI-based tools in general, and in particular fairer automated recruitment systems.
arXiv Detail & Related papers (2020-04-15T15:58:05Z) - A general framework for scientifically inspired explanations in AI [76.48625630211943]
We instantiate the concept of structure of scientific explanation as the theoretical underpinning for a general framework in which explanations for AI systems can be implemented.
This framework aims to provide the tools to build a "mental-model" of any AI system so that the interaction with the user can provide information on demand and be closer to the nature of human-made explanations.
arXiv Detail & Related papers (2020-03-02T10:32:21Z) - Self-explaining AI as an alternative to interpretable AI [0.0]
Double descent indicates that deep neural networks operate by smoothly interpolating between data points.
Neural networks trained on complex real world data are inherently hard to interpret and prone to failure if asked to extrapolate.
Self-explaining AIs are capable of providing a human-understandable explanation along with confidence levels for both the decision and explanation.
arXiv Detail & Related papers (2020-02-12T18:50:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.