A Probabilistic Imaginary Time Evolution Algorithm Based on Non-unitary
Quantum Circuit
- URL: http://arxiv.org/abs/2210.05293v1
- Date: Tue, 11 Oct 2022 09:43:30 GMT
- Title: A Probabilistic Imaginary Time Evolution Algorithm Based on Non-unitary
Quantum Circuit
- Authors: Hao-Nan Xie, Shi-Jie Wei, Fan Yang, Zheng-An Wang, Chi-Tong Chen, Heng
Fan, Gui-Lu Long
- Abstract summary: We propose a probabilistic algorithm for implementing imaginary time evolution based on non-unitary quantum circuit.
We demonstrate the feasibility of this method by solving the ground state energy of several quantum many-body systems.
- Score: 13.1638355883302
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Imaginary time evolution is a powerful tool applied in quantum physics, while
existing classical algorithms for simulating imaginary time evolution suffer
high computational complexity as the quantum systems become larger and more
complex. In this work, we propose a probabilistic algorithm for implementing
imaginary time evolution based on non-unitary quantum circuit. We demonstrate
the feasibility of this method by solving the ground state energy of several
quantum many-body systems, including H2, LiH molecules and the quantum Ising
chain. Moreover, we perform experiments on superconducting and trapped ion
cloud platforms respectively to find the ground state energy of H2 and its most
stable molecular structure. We also analyze the successful probability of the
algorithm, which is a polynomial of the output error and introduce an approach
to increase the success probability by rearranging the terms of Hamiltonian.
Related papers
- Efficient Quantum Pseudorandomness from Hamiltonian Phase States [41.94295877935867]
We introduce a quantum hardness assumption called the Hamiltonian Phase State (HPS) problem.
We show that our assumption is plausibly fully quantum; meaning, it cannot be used to construct one-way functions.
We show that our assumption and its variants allow us to efficiently construct many pseudorandom quantum primitives.
arXiv Detail & Related papers (2024-10-10T16:10:10Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - A hybrid quantum-classical algorithm for multichannel quantum scattering
of atoms and molecules [62.997667081978825]
We propose a hybrid quantum-classical algorithm for solving the Schr"odinger equation for atomic and molecular collisions.
The algorithm is based on the $S$-matrix version of the Kohn variational principle, which computes the fundamental scattering $S$-matrix.
We show how the algorithm could be scaled up to simulate collisions of large polyatomic molecules.
arXiv Detail & Related papers (2023-04-12T18:10:47Z) - Quantum Thermal State Preparation [39.91303506884272]
We introduce simple continuous-time quantum Gibbs samplers for simulating quantum master equations.
We construct the first provably accurate and efficient algorithm for preparing certain purified Gibbs states.
Our algorithms' costs have a provable dependence on temperature, accuracy, and the mixing time.
arXiv Detail & Related papers (2023-03-31T17:29:56Z) - Variational Quantum Time Evolution without the Quantum Geometric Tensor [0.6562256987706128]
variational quantum time evolution is a promising candidate for near-term devices.
We show that our algorithm accurately reproduces the system dynamics at a fraction of the cost of standard variational quantum time evolution algorithms.
As an application of quantum imaginary-time evolution, we calculate a thermodynamic observable, the energy per site, of the Heisenberg model.
arXiv Detail & Related papers (2023-03-22T18:00:08Z) - Kernel-Function Based Quantum Algorithms for Finite Temperature Quantum
Simulation [5.188498150496968]
We present a quantum kernel function (QKFE) algorithm for solving thermodynamic properties of quantum many-body systems.
As compared to its classical counterpart, namely the kernel method (KPM), QKFE has an exponential advantage in the cost of both time and memory.
We demonstrate its efficiency with applications to one and two-dimensional quantum spin models, and a fermionic lattice.
arXiv Detail & Related papers (2022-02-02T18:00:04Z) - Probabilistic imaginary-time evolution by using forward and backward
real-time evolution with a single ancilla: first-quantized eigensolver of
quantum chemistry for ground states [0.0]
Imaginary-time evolution (ITE) on a quantum computer is a promising formalism for obtaining the ground state of a quantum system.
We propose a new approach of PITE which requires only a single ancillary qubit.
We discuss the application of our approach to quantum chemistry by focusing on the scaling of computational cost.
arXiv Detail & Related papers (2021-11-24T12:54:27Z) - Imaginary Time Propagation on a Quantum Chip [50.591267188664666]
Evolution in imaginary time is a prominent technique for finding the ground state of quantum many-body systems.
We propose an algorithm to implement imaginary time propagation on a quantum computer.
arXiv Detail & Related papers (2021-02-24T12:48:00Z) - Real- and imaginary-time evolution with compressed quantum circuits [0.5089078998562184]
We show that quantum circuits can provide a dramatically more efficient representation than current classical numerics.
For quantum circuits, we perform both real- and imaginary-time evolution using an optimization algorithm that is feasible on near-term quantum computers.
arXiv Detail & Related papers (2020-08-24T11:16:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.