Variational Quantum Time Evolution without the Quantum Geometric Tensor
- URL: http://arxiv.org/abs/2303.12839v3
- Date: Mon, 7 Aug 2023 12:52:49 GMT
- Title: Variational Quantum Time Evolution without the Quantum Geometric Tensor
- Authors: Julien Gacon, Jannes Nys, Riccardo Rossi, Stefan Woerner, Giuseppe
Carleo
- Abstract summary: variational quantum time evolution is a promising candidate for near-term devices.
We show that our algorithm accurately reproduces the system dynamics at a fraction of the cost of standard variational quantum time evolution algorithms.
As an application of quantum imaginary-time evolution, we calculate a thermodynamic observable, the energy per site, of the Heisenberg model.
- Score: 0.6562256987706128
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The real- and imaginary-time evolution of quantum states are powerful tools
in physics, chemistry, and beyond, to investigate quantum dynamics, prepare
ground states or calculate thermodynamic observables. On near-term devices,
variational quantum time evolution is a promising candidate for these tasks, as
the required circuit model can be tailored to trade off available device
capabilities and approximation accuracy. However, even if the circuits can be
reliably executed, variational quantum time evolution algorithms quickly become
infeasible for relevant system sizes due to the calculation of the Quantum
Geometric Tensor (QGT). In this work, we propose a solution to this scaling
problem by leveraging a dual formulation that circumvents the explicit
evaluation of the QGT. We demonstrate our algorithm for the time evolution of
the Heisenberg Hamiltonian and show that it accurately reproduces the system
dynamics at a fraction of the cost of standard variational quantum time
evolution algorithms. As an application of quantum imaginary-time evolution, we
calculate a thermodynamic observable, the energy per site, of the Heisenberg
model.
Related papers
- Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Stochastic Approximation of Variational Quantum Imaginary Time Evolution [0.716879432974126]
In quantum computers, the imaginary-time evolution of quantum states is integral to various fields.
Here, we suggest a approach to variational quantum imaginary-time evolution, which allows a significant reduction in runtimes.
We demonstrate the efficiency of our algorithm in simulations and show a hardware experiment performing the imaginary-time evolution of the transverse field Ising model on 27 qubits.
arXiv Detail & Related papers (2023-05-11T18:00:06Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - A Probabilistic Imaginary Time Evolution Algorithm Based on Non-unitary
Quantum Circuit [13.1638355883302]
We propose a probabilistic algorithm for implementing imaginary time evolution based on non-unitary quantum circuit.
We demonstrate the feasibility of this method by solving the ground state energy of several quantum many-body systems.
arXiv Detail & Related papers (2022-10-11T09:43:30Z) - Improved algorithms of quantum imaginary time evolution for ground and
excited states of molecular systems [0.0]
Quantum imaginary time evolution (QITE) is a recently proposed quantum-classical hybrid algorithm that is guaranteed to reach the lowest state of system.
We analyze the derivation of the underlying QITE equation order-by-order, and suggest a modification that is theoretically well founded.
We also discuss how to accurately estimate the norm of an imaginary-time-evolved state, and applied it to excited state calculations.
arXiv Detail & Related papers (2022-05-04T10:32:16Z) - Gauge Quantum Thermodynamics of Time-local non-Markovian Evolutions [77.34726150561087]
We deal with a generic time-local non-Markovian master equation.
We define current and power to be process-dependent as in classical thermodynamics.
Applying the theory to quantum thermal engines, we show that gauge transformations can change the machine efficiency.
arXiv Detail & Related papers (2022-04-06T17:59:15Z) - Probabilistic imaginary-time evolution by using forward and backward
real-time evolution with a single ancilla: first-quantized eigensolver of
quantum chemistry for ground states [0.0]
Imaginary-time evolution (ITE) on a quantum computer is a promising formalism for obtaining the ground state of a quantum system.
We propose a new approach of PITE which requires only a single ancillary qubit.
We discuss the application of our approach to quantum chemistry by focusing on the scaling of computational cost.
arXiv Detail & Related papers (2021-11-24T12:54:27Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Imaginary Time Propagation on a Quantum Chip [50.591267188664666]
Evolution in imaginary time is a prominent technique for finding the ground state of quantum many-body systems.
We propose an algorithm to implement imaginary time propagation on a quantum computer.
arXiv Detail & Related papers (2021-02-24T12:48:00Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Real- and imaginary-time evolution with compressed quantum circuits [0.5089078998562184]
We show that quantum circuits can provide a dramatically more efficient representation than current classical numerics.
For quantum circuits, we perform both real- and imaginary-time evolution using an optimization algorithm that is feasible on near-term quantum computers.
arXiv Detail & Related papers (2020-08-24T11:16:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.