Scanning cavity microscopy of a single-crystal diamond membrane
- URL: http://arxiv.org/abs/2210.05514v2
- Date: Wed, 29 Mar 2023 10:43:11 GMT
- Title: Scanning cavity microscopy of a single-crystal diamond membrane
- Authors: Jonathan K\"orber, Maximilian Pallmann, Julia Heupel, Rainer St\"ohr,
Evgenij Vasilenko, Thomas H\"ummer, Larissa Kohler, Cyril Popov and David
Hunger
- Abstract summary: We study the properties of a high-finesse fiber Fabry-P'erot microcavity with integrated single-crystal diamond membranes.
Results reveal the influence of the diamond surface on the achievable Purcell enhancement.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Spin-bearing color centers in the solid state are promising candidates for
the realization of quantum networks and distributed quantum computing. A
remaining key challenge is their efficient and reliable interfacing to photons.
Incorporating minimally processed membranes into open-access microcavities
represents a promising route for Purcellenhanced spin-photon interfaces: it
enables significant emission enhancement and efficient photon collection,
minimizes deteriorating influence on the quantum emitter, and allows for full
spatial and spectral tunability, key for controllably addressing suitable
emitters with desired optical and spin properties. Here, we study the
properties of a high-finesse fiber Fabry-P\'erot microcavity with integrated
single-crystal diamond membranes by scanning cavity microscopy. We observe
spatially resolved the effects of the diamond-air interface on the cavity mode
structure: a strong correlation of the cavity finesse and mode structure with
the diamond thickness and surface topography, significant transverse-mode
mixing under diamond-like conditions, and mode-character-dependent
polarization-mode splitting. Our results reveal the influence of the diamond
surface on the achievable Purcell enhancement, which helps to clarify the route
towards optimized spin-photon interfaces.
Related papers
- All-in-one Quantum Diamond Microscope for Sensor Characterization [0.0]
Nitrogen-vacancy centers in diamond are a leading modality for magnetic sensing and imaging under ambient conditions.
These sensors suffer from degraded performance due to paramagnetic impurities and regions of stress in the diamond crystal lattice.
This work demonstrates a quantum diamond microscope for simultaneous mapping and spatial correlation of key properties of a millimeter-scale NV-diamond sensor chip.
arXiv Detail & Related papers (2024-04-18T20:17:35Z) - Microwave-based quantum control and coherence protection of tin-vacancy
spin qubits in a strain-tuned diamond membrane heterostructure [54.501132156894435]
Tin-vacancy center (SnV) in diamond is a promising spin-photon interface with desirable optical and spin properties at 1.7 K.
We introduce a new platform that overcomes these challenges - SnV centers in uniformly strained thin diamond membranes.
The presence of crystal strain suppresses temperature dependent dephasing processes, leading to a considerable improvement of the coherence time up to 223 $mu$s at 4 K.
arXiv Detail & Related papers (2023-07-21T21:40:21Z) - Enhanced Spectral Density of a Single Germanium Vacancy Center in a
Nanodiamond by Cavity-Integration [35.759786254573896]
Color centers in diamond, among them the negatively-charged germanium vacancy (GeV$-$), are promising candidates for many applications of quantum optics.
We demonstrate the transfer of a nanodiamond containing a single ingrown GeV- center with excellent optical properties to an open Fabry-P'erot microcavity.
arXiv Detail & Related papers (2023-07-03T10:33:06Z) - Direct-bonded diamond membranes for heterogeneous quantum and electronic technologies [27.85132301368795]
Diamond has superlative material properties for a broad range of quantum and electronic technologies.
Here, we directly bond single-crystal diamond membranes to a variety of materials including silicon, fused silica, sapphire, thermal oxide, and lithium niobate.
Our bonding process combines customized membrane synthesis, transfer, and dry surface functionalization, allowing for minimal contamination.
arXiv Detail & Related papers (2023-06-07T13:07:40Z) - Purcell enhancement of single-photon emitters in silicon [68.8204255655161]
Individual spins that are coupled to telecommunication photons offer unique promise for distributed quantum information processing.
We implement such an interface by integrating erbium dopants into a nanophotonic silicon resonator.
We observe optical Rabi oscillations and single-photon emission with a 78-fold Purcell enhancement.
arXiv Detail & Related papers (2023-01-18T19:38:38Z) - High-precision mapping of diamond crystal strain using quantum
interferometry [1.1545092788508224]
We report diamond strain measurements with a unique set of capabilities, including micron-scale spatial resolution, millimeter-scale field-of-view.
We use strain-sensitive spin-state interferometry on ensembles of nitrogen vacancy (NV) color centers in single-crystal CVD bulk diamond.
arXiv Detail & Related papers (2021-07-31T18:32:49Z) - A cavity-based optical antenna for color centers in diamond [0.0]
Solid-state emitters such as color centers in diamond into quantum technology applications need an efficient atom-photon-interface.
We present a planar optical antenna based on two silver mirrors coated on a thin single crystal diamond membrane.
We show a 6-fold enhancement of the collectible photon rate, yielding up to half a million photons per second from a single SnV center.
arXiv Detail & Related papers (2021-05-21T10:06:45Z) - Inverse-designed photon extractors for optically addressable defect
qubits [48.7576911714538]
Inverse-design optimization of photonic devices enables unprecedented flexibility in tailoring critical parameters of a spin-photon interface.
Inverse-designed devices will enable realization of scalable arrays of single-photon emitters, rapid characterization of new quantum emitters, sensing and efficient heralded entanglement schemes.
arXiv Detail & Related papers (2020-07-24T04:30:14Z) - Tunable quantum photonics platform based on fiber-cavity enhanced single
photon emission from two-dimensional hBN [52.915502553459724]
In this work we present a hybrid system consisting of defect centers in few-layer hBN grown by chemical vapor deposition and a fiber-based Fabry-Perot cavity.
We achieve very large cavity-assisted signal enhancement up to 50-fold and equally strong linewidth narrowing owing to cavity funneling.
Our work marks an important milestone for the deployment of 2D materials coupled to fiber-based cavities in practical quantum technologies.
arXiv Detail & Related papers (2020-06-23T14:20:46Z) - High-Q Nanophotonic Resonators on Diamond Membranes using Templated
Atomic Layer Deposition of TiO2 [48.7576911714538]
Integrating quantum emitters with nanophotonic resonators is essential for efficient spin-photon interfacing and optical networking applications.
Here, we develop an integrated photonics platform based on templated atomic layer deposition of TiO2 on diamond membranes.
Our fabrication method yields high-performance nanophotonic devices while avoiding etching wavelength-scale features into diamond.
arXiv Detail & Related papers (2020-04-07T16:43:46Z) - Nitrogen-vacancy defect emission spectra in the vicinity of an
adjustable silver mirror [62.997667081978825]
Optical emitters of quantum radiation in the solid state are important building blocks for emerging technologies.
We experimentally study the emission spectrum of an ensemble of nitrogen-vacancy defects implanted around 8nm below the planar diamond surface.
arXiv Detail & Related papers (2020-03-31T10:43:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.