論文の概要: Evaluating Unsupervised Denoising Requires Unsupervised Metrics
- arxiv url: http://arxiv.org/abs/2210.05553v2
- Date: Wed, 12 Oct 2022 17:40:01 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-13 14:30:39.564063
- Title: Evaluating Unsupervised Denoising Requires Unsupervised Metrics
- Title(参考訳): 教師なし騒音の評価
- Authors: Adria Marcos-Morales, Matan Leibovich, Sreyas Mohan, Joshua Lawrence
Vincent, Piyush Haluai, Mai Tan, Peter Crozier, Carlos Fernandez-Granda
- Abstract要約: 教師なしのディープラーニング手法は、合成ノイズに基づくベンチマークで印象的な性能を示した。
これらの手法を教師なしの方法で評価するメトリクスは存在しない。
教師なし平均二乗誤差(MSE)と教師なしピーク信号-雑音比(PSNR)の2つの新しい指標を提案する。
- 参考スコア(独自算出の注目度): 16.067013621304348
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Unsupervised denoising is a crucial challenge in real-world imaging
applications. Unsupervised deep-learning methods have demonstrated impressive
performance on benchmarks based on synthetic noise. However, no metrics are
available to evaluate these methods in an unsupervised fashion. This is highly
problematic for the many practical applications where ground-truth clean images
are not available. In this work, we propose two novel metrics: the unsupervised
mean squared error (MSE) and the unsupervised peak signal-to-noise ratio
(PSNR), which are computed using only noisy data. We provide a theoretical
analysis of these metrics, showing that they are asymptotically consistent
estimators of the supervised MSE and PSNR. Controlled numerical experiments
with synthetic noise confirm that they provide accurate approximations in
practice. We validate our approach on real-world data from two imaging
modalities: videos in raw format and transmission electron microscopy. Our
results demonstrate that the proposed metrics enable unsupervised evaluation of
denoising methods based exclusively on noisy data.
- Abstract(参考訳): 教師なしのデノイジングは、実世界のイメージングアプリケーションにおいて重要な課題である。
教師なしのディープラーニング手法は、合成ノイズに基づくベンチマークで印象的な性能を示した。
しかし、これらの手法を教師なしで評価する指標は存在しない。
これは、地上のクリーンなイメージが利用できない多くの実用的なアプリケーションにとって、非常に問題となる。
本研究では,教師なし平均二乗誤差 (unsupervised mean squared error, mse) と教師なしピーク信号対雑音比 (unsupervised peak signal-to-noise ratio, psnr) の2つの新しい指標を提案する。
我々はこれらの指標の理論的解析を行い、それらが教師付きMSEとPSNRの漸近的に一貫した推定値であることを示す。
合成雑音による制御された数値実験は、実際に正確な近似を与えることを確認した。
生のフォーマットによるビデオと透過型電子顕微鏡の2つの画像モダリティから実世界のデータに対するアプローチを検証する。
その結果,提案手法は雑音データのみに基づいて非教師なし評価が可能となった。
関連論文リスト
- SoftPatch: Unsupervised Anomaly Detection with Noisy Data [67.38948127630644]
本稿では,画像センサ異常検出におけるラベルレベルのノイズを初めて考察する。
本稿では,メモリベースの非教師付きAD手法であるSoftPatchを提案する。
既存の手法と比較して、SoftPatchは通常のデータの強力なモデリング能力を維持し、コアセットにおける過信問題を軽減する。
論文 参考訳(メタデータ) (2024-03-21T08:49:34Z) - Direct Unsupervised Denoising [60.71146161035649]
教師なしのデノイザは、MMSE推定のような単一の予測を直接生成しない。
本稿では,VAEと並んで決定論的ネットワークを訓練し,中心的な傾向を直接予測するアプローチを提案する。
論文 参考訳(メタデータ) (2023-10-27T13:02:12Z) - Noise2Contrast: Multi-Contrast Fusion Enables Self-Supervised
Tomographic Image Denoising [6.314790045423454]
ノイズ2コントラストは、複数の計測画像コントラストからの情報を組み合わせて、デノナイジングモデルを訓練する。
画像のコントラストの独立雑音実現を利用して、ドメイン転送演算子と重畳することで、自己監督的損失を導出する。
実測データを用いた実験は,ノイズ2コントラストが他のマルチコントラスト画像に一般化されることを示唆している。
論文 参考訳(メタデータ) (2022-12-09T13:03:24Z) - Enhancing convolutional neural network generalizability via low-rank weight approximation [6.763245393373041]
十分なノイズ処理は、画像処理にとって重要な第一歩であることが多い。
ディープニューラルネットワーク(DNN)は画像のノイズ化に広く利用されている。
本研究では,タッカー低ランクテンソル近似に基づく自己教師付き画像復調フレームワークを提案する。
論文 参考訳(メタデータ) (2022-09-26T14:11:05Z) - AP-BSN: Self-Supervised Denoising for Real-World Images via Asymmetric
PD and Blind-Spot Network [60.650035708621786]
ブラインド・スポット・ネットワーク(BSN)とその変種は、自己監督型デノナイジングにおいて大きな進歩を遂げた。
自己教師付きBSNを用いて空間的に相関した実世界の雑音に対処することは困難である。
近年,実世界の雑音の空間的相関を取り除くために,画素シャッフルダウンサンプリング (PD) が提案されている。
本稿では,この問題に対処する非対称PD(AP)を提案する。
論文 参考訳(メタデータ) (2022-03-22T15:04:37Z) - IDR: Self-Supervised Image Denoising via Iterative Data Refinement [66.5510583957863]
本稿では,最先端のデノナイジング性能を実現するために,教師なしの実用的なデノナイジング手法を提案する。
本手法では, 1つのノイズ画像と1つのノイズモデルしか必要とせず, 実際の生画像に容易にアクセス可能である。
実世界のアプリケーションにおける生画像復調性能を評価するため,500シーンのシーンを含む高品質な生画像データセットSenseNoise-500を構築した。
論文 参考訳(メタデータ) (2021-11-29T07:22:53Z) - Rethinking Noise Synthesis and Modeling in Raw Denoising [75.55136662685341]
センサの実際の雑音を直接サンプリングすることで、ノイズを合成する新しい視点を導入する。
それは本質的に、異なるカメラセンサーに対して正確な生画像ノイズを発生させる。
論文 参考訳(メタデータ) (2021-10-10T10:45:24Z) - Suppression of Correlated Noise with Similarity-based Unsupervised Deep
Learning [7.61850613267116]
Noise2Simは、非局所非線形方式で機能し、相関ノイズを抑制する教師なしのディープ・デノナイジング手法である。
Nosie2Simは、ノイズの多い低用量および光子計数CT画像から、教師付き学習方法と同じくらい効果的に、あるいはそれ以上に機能を回復する。
論文 参考訳(メタデータ) (2020-11-06T14:31:08Z) - Improving Blind Spot Denoising for Microscopy [73.94017852757413]
自己監督型認知の質を向上させる新しい方法を提案する。
我々は、クリーンな画像がポイントスプレッド関数(PSF)との畳み込みの結果であり、ニューラルネットワークの最後にこの操作を明示的に含んでいると仮定する。
論文 参考訳(メタデータ) (2020-08-19T13:06:24Z) - Noise2Inverse: Self-supervised deep convolutional denoising for
tomography [0.0]
Noise2Inverseは、線形画像再構成アルゴリズムのためのディープCNNに基づくDenoising法である。
そこで我々は,そのような学習がCNNを実際に獲得することを示す理論的枠組みを構築した。
シミュレーションCTデータセットにおいて、Noss2Inverseはピーク信号対雑音比と構造類似度指数の改善を示す。
論文 参考訳(メタデータ) (2020-01-31T12:50:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。