論文の概要: Noise2Contrast: Multi-Contrast Fusion Enables Self-Supervised
Tomographic Image Denoising
- arxiv url: http://arxiv.org/abs/2212.04832v1
- Date: Fri, 9 Dec 2022 13:03:24 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-12 15:56:26.846035
- Title: Noise2Contrast: Multi-Contrast Fusion Enables Self-Supervised
Tomographic Image Denoising
- Title(参考訳): ノイズ2コントラスト:マルチコントラスト融合により、自己監督型トモグラフィー画像デノイングが可能に
- Authors: Fabian Wagner, Mareike Thies, Laura Pfaff, Noah Maul, Sabrina
Pechmann, Mingxuan Gu, Jonas Utz, Oliver Aust, Daniela Weidner, Georgiana
Neag, Stefan Uderhardt, Jang-Hwan Choi, Andreas Maier
- Abstract要約: ノイズ2コントラストは、複数の計測画像コントラストからの情報を組み合わせて、デノナイジングモデルを訓練する。
画像のコントラストの独立雑音実現を利用して、ドメイン転送演算子と重畳することで、自己監督的損失を導出する。
実測データを用いた実験は,ノイズ2コントラストが他のマルチコントラスト画像に一般化されることを示唆している。
- 参考スコア(独自算出の注目度): 6.314790045423454
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Self-supervised image denoising techniques emerged as convenient methods that
allow training denoising models without requiring ground-truth noise-free data.
Existing methods usually optimize loss metrics that are calculated from
multiple noisy realizations of similar images, e.g., from neighboring
tomographic slices. However, those approaches fail to utilize the multiple
contrasts that are routinely acquired in medical imaging modalities like MRI or
dual-energy CT. In this work, we propose the new self-supervised training
scheme Noise2Contrast that combines information from multiple measured image
contrasts to train a denoising model. We stack denoising with domain-transfer
operators to utilize the independent noise realizations of different image
contrasts to derive a self-supervised loss. The trained denoising operator
achieves convincing quantitative and qualitative results, outperforming
state-of-the-art self-supervised methods by 4.7-11.0%/4.8-7.3% (PSNR/SSIM) on
brain MRI data and by 43.6-50.5%/57.1-77.1% (PSNR/SSIM) on dual-energy CT X-ray
microscopy data with respect to the noisy baseline. Our experiments on
different real measured data sets indicate that Noise2Contrast training
generalizes to other multi-contrast imaging modalities.
- Abstract(参考訳): 自己教師付き画像デノイジング技術は、地中ノイズのないデータを必要とせずにデノイジングモデルのトレーニングを可能にする便利な手法として登場した。
既存の手法では、近隣のトモグラフィースライスからの類似した画像の複数のノイズ認識から計算される損失メトリクスを最適化する。
しかし、これらのアプローチは、MRIやデュアルエネルギーCTのような医療画像モダリティで日常的に取得される複数のコントラストを利用することができない。
本研究では,複数の画像コントラストからの情報を組み合わせて,自己教師型学習手法であるNoss2Contrastを提案する。
我々は、異なる画像コントラストの独立ノイズ実現を利用して自己教師付き損失を導出するために、ドメイン転送演算子と同期させる。
脳MRIデータでは4.7-11.0%/4.8-7.3%(PSNR/SSIM)、ノイズベースラインでは2重エネルギーCTX線顕微鏡データでは43.6-50.5%/57.1-77.1%(PSNR/SSIM)を達成している。
実測値の異なるデータセットに対する実験は、ノイズ2コントラストトレーニングが他のマルチコントラストイメージングモードに一般化していることを示している。
関連論文リスト
- Neighboring Slice Noise2Noise: Self-Supervised Medical Image Denoising from Single Noisy Image Volume [12.077993066353294]
近距離スライスノイズ2ノイズ(NS-N2N)の自己監督型医用画像復号法を提案する。
NS-N2Nは、画像ボリューム自体の高品質な denoising を実現するために、1つの医療画像から得られるノイズの多い画像ボリュームのみを必要とする。
論文 参考訳(メタデータ) (2024-11-16T16:24:28Z) - The role of noise in denoising models for anomaly detection in medical
images [62.0532151156057]
病理脳病変は脳画像に多彩な外観を示す。
正規データのみを用いた教師なし異常検出手法が提案されている。
空間分解能の最適化と雑音の大きさの最適化により,異なるモデル学習体制の性能が向上することを示す。
論文 参考訳(メタデータ) (2023-01-19T21:39:38Z) - Noise2SR: Learning to Denoise from Super-Resolved Single Noisy
Fluorescence Image [9.388253054229155]
ノイズ2SRは、異なる次元の雑音のペア画像で訓練するために設計されている。
より効率的に自己監督され、単一ノイズの観測からより多くの画像の詳細を復元することができる。
我々は、ノイズ2SRは、他の種類の科学的画像品質を改善する可能性があると想定している。
論文 参考訳(メタデータ) (2022-09-14T04:44:41Z) - IDR: Self-Supervised Image Denoising via Iterative Data Refinement [66.5510583957863]
本稿では,最先端のデノナイジング性能を実現するために,教師なしの実用的なデノナイジング手法を提案する。
本手法では, 1つのノイズ画像と1つのノイズモデルしか必要とせず, 実際の生画像に容易にアクセス可能である。
実世界のアプリケーションにおける生画像復調性能を評価するため,500シーンのシーンを含む高品質な生画像データセットSenseNoise-500を構築した。
論文 参考訳(メタデータ) (2021-11-29T07:22:53Z) - ISCL: Interdependent Self-Cooperative Learning for Unpaired Image
Denoising [3.796436257221662]
本論文では,ISCL (Interdependent Self-Cooperative Learning) を提案する。
ISCLは、周期的対向学習と自己監督的残差学習を組み合わせる。
そこで本研究では,isclが従来および現在のディープラーニングに基づく画像デノイジング法よりも優れていることを示す。
論文 参考訳(メタデータ) (2021-02-19T10:54:25Z) - Neighbor2Neighbor: Self-Supervised Denoising from Single Noisy Images [98.82804259905478]
Neighbor2Neighborを提示し、ノイズの多い画像のみで効果的な画像消音モデルをトレーニングします。
ネットワークのトレーニングに使用される入力とターゲットは、同じノイズ画像からサブサンプリングされた画像である。
デノイジングネットワークは、第1段階で生成されたサブサンプルトレーニングペアで訓練され、提案された正規化器は、より良いパフォーマンスのための追加の損失として訓練される。
論文 参考訳(メタデータ) (2021-01-08T02:03:25Z) - Suppression of Correlated Noise with Similarity-based Unsupervised Deep
Learning [7.61850613267116]
Noise2Simは、非局所非線形方式で機能し、相関ノイズを抑制する教師なしのディープ・デノナイジング手法である。
Nosie2Simは、ノイズの多い低用量および光子計数CT画像から、教師付き学習方法と同じくらい効果的に、あるいはそれ以上に機能を回復する。
論文 参考訳(メタデータ) (2020-11-06T14:31:08Z) - Noise2Same: Optimizing A Self-Supervised Bound for Image Denoising [54.730707387866076]
本稿では,新しい自己教師型デノベーションフレームワークであるNoss2Sameを紹介する。
特にノイズ2Sameは、ノイズモデルに関するJ-不変性や余分な情報を必要としない。
以上の結果から,ノイズ2Sameは従来の自己監督型遮音法よりも優れていたことが示唆された。
論文 参考訳(メタデータ) (2020-10-22T18:12:26Z) - Unpaired Learning of Deep Image Denoising [80.34135728841382]
本稿では,自己指導型学習と知識蒸留を取り入れた2段階の手法を提案する。
自己教師型学習では,実雑音の画像のみから視覚を学習するための拡張型盲点ネットワーク(D-BSN)を提案する。
実験の結果,本手法は合成ノイズ画像と実世界のノイズ画像の両方で良好に機能することがわかった。
論文 参考訳(メタデータ) (2020-08-31T16:22:40Z) - Improving Blind Spot Denoising for Microscopy [73.94017852757413]
自己監督型認知の質を向上させる新しい方法を提案する。
我々は、クリーンな画像がポイントスプレッド関数(PSF)との畳み込みの結果であり、ニューラルネットワークの最後にこの操作を明示的に含んでいると仮定する。
論文 参考訳(メタデータ) (2020-08-19T13:06:24Z) - Self-supervised Dynamic CT Perfusion Image Denoising with Deep Neural
Networks [6.167259271197635]
ダイナミックCT(Dynamic Computed Tomography, CTP)は急性期脳梗塞の診断と評価に有望なアプローチである。
脳小葉の血行動態のパラメトリックマップは、脳内のヨウ素化コントラストの第1パスのCTスキャンから算出される。
診断の信頼性を高めるためには, 画像診断が必要であり, 繰り返しスキャンによる高放射線曝露により, 日常的用途の灌流量を削減する必要がある。
論文 参考訳(メタデータ) (2020-05-19T21:44:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。