論文の概要: Synthetic Power Analyses: Empirical Evaluation and Application to
Cognitive Neuroimaging
- arxiv url: http://arxiv.org/abs/2210.05835v1
- Date: Tue, 11 Oct 2022 23:33:32 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-13 12:16:02.957451
- Title: Synthetic Power Analyses: Empirical Evaluation and Application to
Cognitive Neuroimaging
- Title(参考訳): 合成パワー分析 : 経験的評価と認知神経イメージングへの応用
- Authors: Peiye Zhuang, Bliss Chapman, Ran Li, Oluwasanmi Koyejo
- Abstract要約: 様々なサンプルサイズで統計的パワーを推定する枠組みを提案する。
認知神経科学実験におけるサンプルサイズ選択のための合成パワー分析の性能を実証的に検討した。
実験結果から, 合成電力分析がパイロットデータ収集の低コストな代替手段となる可能性が示唆された。
- 参考スコア(独自算出の注目度): 14.57108653193695
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In the experimental sciences, statistical power analyses are often used
before data collection to determine the required sample size. However,
traditional power analyses can be costly when data are difficult or expensive
to collect. We propose synthetic power analyses; a framework for estimating
statistical power at various sample sizes, and empirically explore the
performance of synthetic power analysis for sample size selection in cognitive
neuroscience experiments. To this end, brain imaging data is synthesized using
an implicit generative model conditioned on observed cognitive processes.
Further, we propose a simple procedure to modify the statistical tests which
result in conservative statistics. Our empirical results suggest that synthetic
power analysis could be a low-cost alternative to pilot data collection when
the proposed experiments share cognitive processes with previously conducted
experiments.
- Abstract(参考訳): 実験科学では、必要なサンプルサイズを決定するためにデータ収集の前に統計パワー分析がしばしば用いられる。
しかし、データ収集が難しい場合やコストがかかる場合、従来の電力分析はコストがかかる。
本研究では,様々なサンプルサイズにおける統計的パワー推定のための枠組みである合成パワー解析を提案し,認知神経科学実験におけるサンプルサイズ選択のための合成パワー解析の性能を実証的に検討する。
この目的のために、観察された認知過程に基づいて暗黙的な生成モデルを用いて脳画像データを合成する。
さらに,保守的な統計結果をもたらす統計検査を簡易に修正する手法を提案する。
実験結果から, 提案実験が先行実験と認知過程を共有する場合, 合成電力分析がパイロットデータ収集の低コストな代替となる可能性が示唆された。
関連論文リスト
- Debiasing Synthetic Data Generated by Deep Generative Models [40.165159490379146]
合成データ生成のための深部生成モデル(DGM)は、合成データ解析においてバイアスと不正確性を誘導する。
本稿では,DGMが生成する合成データを,特定のデータ解析のためにターゲットとする新たな戦略を提案する。
提案手法は, 偏差を考慮し, 収束率を向上し, 容易に近似された大きなサンプル分散を持つ推定器の計算を容易にする。
論文 参考訳(メタデータ) (2024-11-06T19:24:34Z) - The Real Deal Behind the Artificial Appeal: Inferential Utility of Tabular Synthetic Data [40.165159490379146]
評価値が不偏であっても, 偽陽性の発見率(タイプ1の誤り)は不可避的に高いことが示唆された。
以前提案された補正係数が使用されているにもかかわらず、この問題は深層生成モデルに対して持続する。
論文 参考訳(メタデータ) (2023-12-13T02:04:41Z) - Synthetic data generation for a longitudinal cohort study -- Evaluation,
method extension and reproduction of published data analysis results [0.32593385688760446]
医療分野では、プライバシー上の懸念から個人レベルのデータへのアクセスは困難であることが多い。
有望な代替手段は、完全な合成データの生成である。
本研究では,最先端の合成データ生成手法を用いる。
論文 参考訳(メタデータ) (2023-05-12T13:13:55Z) - Revisiting the Evaluation of Image Synthesis with GANs [55.72247435112475]
本研究では, 合成性能の評価に関する実証的研究を行い, 生成モデルの代表としてGAN(Generative Adversarial Network)を用いた。
特に、表現空間におけるデータポイントの表現方法、選択したサンプルを用いた公平距離の計算方法、各集合から使用可能なインスタンス数など、さまざまな要素の詳細な分析を行う。
論文 参考訳(メタデータ) (2023-04-04T17:54:32Z) - Online simulator-based experimental design for cognitive model selection [74.76661199843284]
本稿では,抽出可能な確率を伴わない計算モデルを選択する実験設計手法BOSMOSを提案する。
シミュレーション実験では,提案手法により,既存のLFI手法に比べて最大2桁の精度でモデルを選択することができることを示した。
論文 参考訳(メタデータ) (2023-03-03T21:41:01Z) - Trustworthiness of Laser-Induced Breakdown Spectroscopy Predictions via
Simulation-based Synthetic Data Augmentation and Multitask Learning [4.633997895806144]
レーザ誘起分解分光法を用いてスペクトルデータの定量的解析を行う。
我々は、利用可能なトレーニングデータの小さなサイズと、未知のデータに対する推論中の予測の検証に対処する。
論文 参考訳(メタデータ) (2022-10-07T18:00:09Z) - Investigating Bias with a Synthetic Data Generator: Empirical Evidence
and Philosophical Interpretation [66.64736150040093]
機械学習の応用は、私たちの社会でますます広まりつつある。
リスクは、データに埋め込まれたバイアスを体系的に広めることである。
本稿では,特定の種類のバイアスとその組み合わせで合成データを生成するフレームワークを導入することにより,バイアスを分析することを提案する。
論文 参考訳(メタデータ) (2022-09-13T11:18:50Z) - BeCAPTCHA-Type: Biometric Keystroke Data Generation for Improved Bot
Detection [63.447493500066045]
本研究では,キーストローク生体データ合成のためのデータ駆動学習モデルを提案する。
提案手法は,ユニバーサルモデルとユーザ依存モデルに基づく2つの統計的手法と比較する。
実験フレームワークでは16万件の被験者から1億3600万件のキーストロークイベントのデータセットについて検討している。
論文 参考訳(メタデータ) (2022-07-27T09:26:15Z) - A Kernelised Stein Statistic for Assessing Implicit Generative Models [10.616967871198689]
本稿では,合成データ生成装置の品質を評価するための基本手法を提案する。
合成データ生成装置からのサンプルサイズは所望の大きさで、生成装置がエミュレートすることを目的とした観測データのサイズは固定される。
論文 参考訳(メタデータ) (2022-05-31T23:40:21Z) - With Little Power Comes Great Responsibility [54.96675741328462]
アンダーパワー実験により、統計的ノイズと有意義なモデル改善の違いを識別することがより困難になる。
小さなテストセットは、ほとんどの試行錯誤が、最先端のモデルと比較しても、十分なパワーが得られないことを意味している。
機械翻訳では,2000文の典型的テストセットが約75%のパワーで1 BLEU点の差を検出する。
論文 参考訳(メタデータ) (2020-10-13T18:00:02Z) - Modeling Shared Responses in Neuroimaging Studies through MultiView ICA [94.31804763196116]
被験者の大規模なコホートを含むグループ研究は、脳機能組織に関する一般的な結論を引き出す上で重要である。
グループ研究のための新しい多視点独立成分分析モデルを提案し、各被験者のデータを共有独立音源と雑音の線形結合としてモデル化する。
まず、fMRIデータを用いて、被験者間の共通音源の同定における感度の向上を示す。
論文 参考訳(メタデータ) (2020-06-11T17:29:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。