Deep Learning for Iris Recognition: A Survey
- URL: http://arxiv.org/abs/2210.05866v1
- Date: Wed, 12 Oct 2022 01:58:09 GMT
- Title: Deep Learning for Iris Recognition: A Survey
- Authors: Kien Nguyen, Hugo Proen\c{c}a, Fernando Alonso-Fernandez
- Abstract summary: We conduct a comprehensive analysis of deep learning techniques developed for two main sub-tasks in iris biometrics: segmentation and recognition.
Third, we delve deep into deep learning techniques for forensic application, especially in post-mortem iris recognition.
Fourth, we review open-source resources and tools in deep learning techniques for iris recognition.
- Score: 66.55441036931555
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In this survey, we provide a comprehensive review of more than 200 papers,
technical reports, and GitHub repositories published over the last 10 years on
the recent developments of deep learning techniques for iris recognition,
covering broad topics on algorithm designs, open-source tools, open challenges,
and emerging research. First, we conduct a comprehensive analysis of deep
learning techniques developed for two main sub-tasks in iris biometrics:
segmentation and recognition. Second, we focus on deep learning techniques for
the robustness of iris recognition systems against presentation attacks and via
human-machine pairing. Third, we delve deep into deep learning techniques for
forensic application, especially in post-mortem iris recognition. Fourth, we
review open-source resources and tools in deep learning techniques for iris
recognition. Finally, we highlight the technical challenges, emerging research
trends, and outlook for the future of deep learning in iris recognition.
Related papers
- Understanding Audiovisual Deepfake Detection: Techniques, Challenges, Human Factors and Perceptual Insights [49.81915942821647]
Deep Learning has been successfully applied in diverse fields, and its impact on deepfake detection is no exception.
Deepfakes are fake yet realistic synthetic content that can be used deceitfully for political impersonation, phishing, slandering, or spreading misinformation.
This paper aims to improve the effectiveness of deepfake detection strategies and guide future research in cybersecurity and media integrity.
arXiv Detail & Related papers (2024-11-12T09:02:11Z) - Deep Learning Technology for Face Forgery Detection: A Survey [17.519617618071003]
Deep learning has enabled the creation or manipulation of high-fidelity facial images and videos.
This technology, also known as deepfake, has achieved dramatic progress and become increasingly popular in social media.
To diminish the risks of deepfake, it is desirable to develop powerful forgery detection methods.
arXiv Detail & Related papers (2024-09-22T01:42:01Z) - Exploring Deep Learning Image Super-Resolution for Iris Recognition [50.43429968821899]
We propose the use of two deep learning single-image super-resolution approaches: Stacked Auto-Encoders (SAE) and Convolutional Neural Networks (CNN)
We validate the methods with a database of 1.872 near-infrared iris images with quality assessment and recognition experiments showing the superiority of deep learning approaches over the compared algorithms.
arXiv Detail & Related papers (2023-11-02T13:57:48Z) - Deep Learning for Iris Recognition: A Review [7.884782855865438]
Iris recognition is considered more reliable and less susceptible to external factors than other biometric recognition methods.
Unlike traditional machine learning-based iris recognition methods, deep learning technology does not rely on feature engineering and boasts excellent performance.
This paper collects 120 relevant papers to summarize the development of iris recognition based on deep learning.
arXiv Detail & Related papers (2023-03-15T10:45:21Z) - Knowledge-enhanced Neural Machine Reasoning: A Review [67.51157900655207]
We introduce a novel taxonomy that categorizes existing knowledge-enhanced methods into two primary categories and four subcategories.
We elucidate the current application domains and provide insight into promising prospects for future research.
arXiv Detail & Related papers (2023-02-04T04:54:30Z) - A Comprehensive Survey on Deep Gait Recognition: Algorithms, Datasets
and Challenges [18.08349977960643]
Gait recognition aims to identify a person at a distance, serving as a promising solution for long-distance and less-cooperation pedestrian recognition.
Recent advancements in gait recognition have achieved inspiring success in many challenging scenarios by utilizing deep learning techniques.
New challenges for gait recognition, including robust deep representation modeling, in-the-wild gait recognition, and recognition from new visual sensors such as infrared and depth cameras.
arXiv Detail & Related papers (2022-06-28T03:36:12Z) - Deep Learning Based Person Re-Identification Methods: A Survey and
Outlook of Recent Works [5.202841879001503]
We compare traditional and deep learning-based person Re-ID methods, and present the main contributions of several person Re-ID surveys.
We focus on the current classic deep learning-based person Re-ID methods, including methods for deep metric learning, local feature learning, generate adversarial networks, sequence feature learning, and graph convolutional networks.
arXiv Detail & Related papers (2021-10-10T11:23:47Z) - Threat of Adversarial Attacks on Deep Learning in Computer Vision:
Survey II [86.51135909513047]
Deep Learning is vulnerable to adversarial attacks that can manipulate its predictions.
This article reviews the contributions made by the computer vision community in adversarial attacks on deep learning.
It provides definitions of technical terminologies for non-experts in this domain.
arXiv Detail & Related papers (2021-08-01T08:54:47Z) - Recent advances and clinical applications of deep learning in medical
image analysis [7.132678647070632]
We reviewed and summarized more than 200 recently published papers to provide a comprehensive overview of applying deep learning methods in various medical image analysis tasks.
Especially, we emphasize the latest progress and contributions of state-of-the-art unsupervised and semi-supervised deep learning in medical images.
arXiv Detail & Related papers (2021-05-27T18:05:12Z) - Deep Learning for Sensor-based Human Activity Recognition: Overview,
Challenges and Opportunities [52.59080024266596]
We present a survey of the state-of-the-art deep learning methods for sensor-based human activity recognition.
We first introduce the multi-modality of the sensory data and provide information for public datasets.
We then propose a new taxonomy to structure the deep methods by challenges.
arXiv Detail & Related papers (2020-01-21T09:55:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.