論文の概要: Pathology Steered Stratification Network for Subtype Identification in
Alzheimer's Disease
- arxiv url: http://arxiv.org/abs/2210.05880v2
- Date: Fri, 25 Aug 2023 14:59:21 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-28 18:12:22.600886
- Title: Pathology Steered Stratification Network for Subtype Identification in
Alzheimer's Disease
- Title(参考訳): アルツハイマー病のサブタイプ同定のための病理ステアリングネットワーク
- Authors: Enze Xu, Jingwen Zhang, Jiadi Li, Qianqian Song, Defu Yang, Guorong
Wu, Minghan Chen
- Abstract要約: アルツハイマー病(英: Alzheimers disease、AD)は、β-アミロイド、病理学的タウ、神経変性を特徴とする異種多時性神経変性疾患である。
本稿では,AD病理学に確立されたドメイン知識を反応拡散モデルにより組み込んだ新しい病理組織形成ネットワーク(PSSN)を提案する。
- 参考スコア(独自算出の注目度): 7.594681424335177
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Alzheimer's disease (AD) is a heterogeneous, multifactorial neurodegenerative
disorder characterized by beta-amyloid, pathologic tau, and neurodegeneration.
There are no effective treatments for Alzheimer's disease at a late stage,
urging for early intervention. However, existing statistical inference
approaches of AD subtype identification ignore the pathological domain
knowledge, which could lead to ill-posed results that are sometimes
inconsistent with the essential neurological principles. Integrating systems
biology modeling with machine learning, we propose a novel pathology steered
stratification network (PSSN) that incorporates established domain knowledge in
AD pathology through a reaction-diffusion model, where we consider non-linear
interactions between major biomarkers and diffusion along brain structural
network. Trained on longitudinal multimodal neuroimaging data, the biological
model predicts long-term trajectories that capture individual progression
pattern, filling in the gaps between sparse imaging data available. A deep
predictive neural network is then built to exploit spatiotemporal dynamics,
link neurological examinations with clinical profiles, and generate subtype
assignment probability on an individual basis. We further identify an
evolutionary disease graph to quantify subtype transition probabilities through
extensive simulations. Our stratification achieves superior performance in both
inter-cluster heterogeneity and intra-cluster homogeneity of various clinical
scores. Applying our approach to enriched samples of aging populations, we
identify six subtypes spanning AD spectrum, where each subtype exhibits a
distinctive biomarker pattern that is consistent with its clinical outcome.
PSSN provides insights into pre-symptomatic diagnosis and practical guidance on
clinical treatments, which may be further generalized to other
neurodegenerative diseases.
- Abstract(参考訳): アルツハイマー病 (ad) は、βアミロイド、病理tau、神経変性を特徴とする異種多因子性神経変性障害である。
後期のアルツハイマー病には効果的な治療法はなく、早期介入を勧めている。
しかし、ADサブタイプ同定の既存の統計的推測手法は、病理領域の知識を無視しており、それが時には本質的な神経学原理と矛盾する結果をもたらす可能性がある。
システム生物学モデリングと機械学習を統合することで,AD病理における確立されたドメイン知識を反応拡散モデルにより組み込んだ新しい病理組織階層ネットワーク(PSSN)を提案し,主要なバイオマーカー間の非線形相互作用と脳構造ネットワークに沿った拡散について考察する。
縦型マルチモーダルニューロイメージングデータに基づいてトレーニングされた生体モデルは、個々の進行パターンを捉えた長期的軌跡を予測し、利用可能なスパースな画像データ間のギャップを埋める。
次に深層予測ニューラルネットワークを構築し、時空間ダイナミクスを活用し、神経学的検査と臨床プロファイルをリンクし、個々のサブタイプ割り当て確率を生成する。
さらに、広範囲なシミュレーションにより、サブタイプ遷移確率を定量化する進化病図を同定する。
クラスタ間均質性およびクラスタ内均質性の両方において,臨床検査結果の成層性は良好である。
老化個体群を豊かにするアプローチを用いて,adスペクトルにまたがる6つのサブタイプを同定し,各サブタイプは臨床結果と一致した特徴的なバイオマーカーパターンを示す。
PSSNは、症状前診断の洞察と臨床治療の実践的ガイダンスを提供し、他の神経変性疾患にさらに一般化される可能性がある。
関連論文リスト
- Clustering Alzheimer's Disease Subtypes via Similarity Learning and Graph Diffusion [14.536841566365048]
アルツハイマー病(英語: Alzheimer's disease、AD)は、世界中の何百万人もの人に影響を及ぼす複雑な神経変性疾患である。
本研究の目的は,臨床像や病態を特徴とするADのサブタイプを同定することである。
論文 参考訳(メタデータ) (2024-10-04T21:38:14Z) - A Survey of Artificial Intelligence in Gait-Based Neurodegenerative Disease Diagnosis [51.07114445705692]
神経変性疾患(神経変性疾患、ND)は、伝統的に医学的診断とモニタリングのために広範囲の医療資源と人的努力を必要とする。
重要な疾患関連運動症状として、ヒトの歩行を利用して異なるNDを特徴づけることができる。
人工知能(AI)モデルの現在の進歩は、NDの識別と分類のための自動歩行分析を可能にする。
論文 参考訳(メタデータ) (2024-05-21T06:44:40Z) - Multimodal Neurodegenerative Disease Subtyping Explained by ChatGPT [15.942849233189664]
アルツハイマー病は最も多い神経変性疾患である。
現在のデータ駆動型アプローチでは、ADまたは関連する障害の後期段階でサブタイプを分類することができるが、無症状またはプロドロマル段階の予測では困難である。
本稿では,AD患者を早期にサブタイプに分類するために,画像,遺伝学,臨床評価などの早期指標を用いたマルチモーダルフレームワークを提案する。
論文 参考訳(メタデータ) (2024-01-31T19:30:04Z) - Dimensional Neuroimaging Endophenotypes: Neurobiological Representations
of Disease Heterogeneity Through Machine Learning [11.653182438505558]
まず、機械学習とマルチモーダルMRIを用いて、様々な神経精神・神経変性疾患における疾患の多様性を解明する研究の体系的な概要を述べる。
次に、関連する機械学習手法を要約し、DNEと呼ばれる新しいパラダイムについて議論する。
DNEは神経精神医学および神経変性疾患の神経生物学的不均一性を低次元で情報的かつ定量的な脳表現表現に識別する。
論文 参考訳(メタデータ) (2024-01-17T16:31:48Z) - Incomplete Multimodal Learning for Complex Brain Disorders Prediction [65.95783479249745]
本稿では,変換器と生成対向ネットワークを用いた不完全なマルチモーダルデータ統合手法を提案する。
アルツハイマー病神経画像イニシアチブコホートを用いたマルチモーダルイメージングによる認知変性と疾患予後の予測に本手法を適用した。
論文 参考訳(メタデータ) (2023-05-25T16:29:16Z) - Morphological feature visualization of Alzheimer's disease via
Multidirectional Perception GAN [40.50404819220093]
アルツハイマー病(AD)の重症度を示す形態的特徴を可視化するために, 新規な多方向知覚生成適応ネットワーク(MP-GAN)を提案する。
MP-GANは既存の手法に比べて優れた性能を発揮する。
論文 参考訳(メタデータ) (2021-11-25T03:24:52Z) - G-MIND: An End-to-End Multimodal Imaging-Genetics Framework for
Biomarker Identification and Disease Classification [49.53651166356737]
診断によって誘導される画像データと遺伝データを統合し、解釈可能なバイオマーカーを提供する新しいディープニューラルネットワークアーキテクチャを提案する。
2つの機能的MRI(fMRI)パラダイムとSingle Nucleotide Polymorphism (SNP)データを含む統合失調症の集団研究で本モデルを評価した。
論文 参考訳(メタデータ) (2021-01-27T19:28:04Z) - Neuro-symbolic Neurodegenerative Disease Modeling as Probabilistic
Programmed Deep Kernels [93.58854458951431]
本稿では、神経変性疾患のパーソナライズされた予測モデリングのための、確率的プログラムによる深層カーネル学習手法を提案する。
我々の分析は、ニューラルネットワークとシンボリック機械学習のアプローチのスペクトルを考慮する。
我々は、アルツハイマー病の予測問題について評価を行い、深層学習を超越した結果を得た。
論文 参考訳(メタデータ) (2020-09-16T15:16:03Z) - MAGIC: Multi-scale Heterogeneity Analysis and Clustering for Brain
Diseases [3.955454029331185]
マルチスケールクラスタリングを活用することにより,病気の多様性を明らかにする新しい手法MAGICを提案する。
シミュレーションした異種神経解剖学的データを用いてMAGICを検証するとともに、アルツハイマー病(AD)の異種性を探究して臨床応用の可能性を示す。
以上の結果より,大脳皮質大萎縮と大脳皮質大萎縮の2つの亜型は,海馬の微細萎縮と大脳皮質大萎縮の2つからなることが明らかとなった。
論文 参考訳(メタデータ) (2020-07-01T23:42:37Z) - A Graph Gaussian Embedding Method for Predicting Alzheimer's Disease
Progression with MEG Brain Networks [59.15734147867412]
アルツハイマー病(AD)に関連する機能的脳ネットワークの微妙な変化を特徴付けることは、疾患進行の早期診断と予測に重要である。
我々は、多重グラフガウス埋め込みモデル(MG2G)と呼ばれる新しいディープラーニング手法を開発した。
我々はMG2Gを用いて、MEG脳ネットワークの内在性潜在性次元を検出し、軽度認知障害(MCI)患者のADへの進行を予測し、MCIに関連するネットワーク変化を伴う脳領域を同定した。
論文 参考訳(メタデータ) (2020-05-08T02:29:24Z) - Learning Dynamic and Personalized Comorbidity Networks from Event Data
using Deep Diffusion Processes [102.02672176520382]
コンコルビンド病は、個人によって異なる複雑な時間的パターンを通じて発生し進行する。
電子的な健康記録では、患者が持つ異なる疾患を観察できるが、それぞれの共死状態の時間的関係を推測できるだけである。
我々は「ダイナミック・コオービディティ・ネットワーク」をモデル化するための深層拡散プロセスを開発する。
論文 参考訳(メタデータ) (2020-01-08T15:47:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。