論文の概要: Dimensional Neuroimaging Endophenotypes: Neurobiological Representations
of Disease Heterogeneity Through Machine Learning
- arxiv url: http://arxiv.org/abs/2401.09517v1
- Date: Wed, 17 Jan 2024 16:31:48 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-19 18:59:38.215417
- Title: Dimensional Neuroimaging Endophenotypes: Neurobiological Representations
of Disease Heterogeneity Through Machine Learning
- Title(参考訳): 次元ニューロイメージングエンドフェノタイプ : 機械学習による疾患の多様性の神経生物学的表現
- Authors: Junhao Wen, Mathilde Antoniades, Zhijian Yang, Gyujoon Hwang, Ioanna
Skampardoni, Rongguang Wang, Christos Davatzikos
- Abstract要約: まず、機械学習とマルチモーダルMRIを用いて、様々な神経精神・神経変性疾患における疾患の多様性を解明する研究の体系的な概要を述べる。
次に、関連する機械学習手法を要約し、DNEと呼ばれる新しいパラダイムについて議論する。
DNEは神経精神医学および神経変性疾患の神経生物学的不均一性を低次元で情報的かつ定量的な脳表現表現に識別する。
- 参考スコア(独自算出の注目度): 11.653182438505558
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Machine learning has been increasingly used to obtain individualized
neuroimaging signatures for disease diagnosis, prognosis, and response to
treatment in neuropsychiatric and neurodegenerative disorders. Therefore, it
has contributed to a better understanding of disease heterogeneity by
identifying disease subtypes that present significant differences in various
brain phenotypic measures. In this review, we first present a systematic
literature overview of studies using machine learning and multimodal MRI to
unravel disease heterogeneity in various neuropsychiatric and neurodegenerative
disorders, including Alzheimer disease, schizophrenia, major depressive
disorder, autism spectrum disorder, multiple sclerosis, as well as their
potential in transdiagnostic settings. Subsequently, we summarize relevant
machine learning methodologies and discuss an emerging paradigm which we call
dimensional neuroimaging endophenotype (DNE). DNE dissects the neurobiological
heterogeneity of neuropsychiatric and neurodegenerative disorders into a low
dimensional yet informative, quantitative brain phenotypic representation,
serving as a robust intermediate phenotype (i.e., endophenotype) largely
reflecting underlying genetics and etiology. Finally, we discuss the potential
clinical implications of the current findings and envision future research
avenues.
- Abstract(参考訳): 機械学習は、神経精神疾患および神経変性疾患の診断、予後、治療に対する反応のための個別化された神経画像シグネチャを得るためにますます使われてきた。
したがって、様々な脳の表現型に有意な差を示す疾患のサブタイプを同定することで、疾患の多様性をよりよく理解するのに役立つ。
本稿では,まず,アルツハイマー病,統合失調症,大うつ病,自閉症スペクトラム障害,多発性硬化症などの種々の神経精神疾患および神経変性疾患における疾患の多様性を解き放つために,機械学習とマルチモーダルmriを用いた研究を体系的に概観した。
次に,関連する機械学習方法論を要約し,dne(dimensional neuroimaging endophenotype)と呼ばれる新しいパラダイムについて論じる。
DNEは、神経精神医学および神経変性疾患の神経生物学的不均一性を低次元で情報的かつ定量的な脳表現型表現に分解し、基礎となる遺伝学と退化学を主に反映する堅牢な中間表現型(内フェノタイプ)として機能する。
最後に, 本研究の臨床的意義について考察し, 今後の展望について考察する。
関連論文リスト
- Towards the Discovery of Down Syndrome Brain Biomarkers Using Generative Models [0.0]
我々は変分オートエンコーダと拡散モデルに基づく最先端の脳異常検出モデルの評価を行った。
以上の結果から、ダウン症候群の脳解剖を特徴付ける一次変化を効果的に検出するモデルが存在することが示唆された。
論文 参考訳(メタデータ) (2024-09-20T12:01:15Z) - UniBrain: Universal Brain MRI Diagnosis with Hierarchical
Knowledge-enhanced Pre-training [66.16134293168535]
我々はUniBrainと呼ばれるユニバーサル脳MRI診断のための階層的知識強化事前訓練フレームワークを提案する。
具体的には、UniBrainは、定期的な診断から24,770のイメージレポートペアの大規模なデータセットを活用する。
論文 参考訳(メタデータ) (2023-09-13T09:22:49Z) - Incomplete Multimodal Learning for Complex Brain Disorders Prediction [65.95783479249745]
本稿では,変換器と生成対向ネットワークを用いた不完全なマルチモーダルデータ統合手法を提案する。
アルツハイマー病神経画像イニシアチブコホートを用いたマルチモーダルイメージングによる認知変性と疾患予後の予測に本手法を適用した。
論文 参考訳(メタデータ) (2023-05-25T16:29:16Z) - Deep learning reveals the common spectrum underlying multiple brain
disorders in youth and elders from brain functional networks [53.257804915263165]
ヒトの初期および後期の脳障害は、脳機能における病理学的変化を共有する可能性がある。
病理的共通性に関する神経画像データによる重要な証拠はいまだ発見されていない。
多地点機能磁気共鳴画像データを用いたディープラーニングモデルを構築し、健康的な制御から5つの異なる脳障害を分類する。
論文 参考訳(メタデータ) (2023-02-23T09:22:05Z) - Gene-SGAN: a method for discovering disease subtypes with imaging and
genetic signatures via multi-view weakly-supervised deep clustering [6.79528256151419]
Gene-SGANは、マルチビュー、弱教師付きディープクラスタリング手法である。
表現型および遺伝的データを共同で検討することで、病気の不均一性を識別する。
ジーン-SGANは、疾患のサブタイプやエンドフェノタイプ発見に広く応用されている。
論文 参考訳(メタデータ) (2023-01-25T10:08:30Z) - Promises and pitfalls of deep neural networks in neuroimaging-based
psychiatric research [0.9449650062296824]
ディープニューラルネットワーク、特に畳み込みニューラルネットワークは、医療画像の強力なツールへと進化してきた。
ここでは、まず、方法論的鍵概念と結果の方法論的約束について紹介する。
神経画像に基づく精神医学研究における最近の応用を振り返り、現在の課題について論じる。
論文 参考訳(メタデータ) (2023-01-20T12:05:59Z) - Constraints on the design of neuromorphic circuits set by the properties
of neural population codes [61.15277741147157]
脳内では、情報はコード化され、伝達され、行動を伝えるために使用される。
ニューロモルフィック回路は、脳内のニューロンの集団が使用するものと互換性のある方法で情報を符号化する必要がある。
論文 参考訳(メタデータ) (2022-12-08T15:16:04Z) - Pathology Steered Stratification Network for Subtype Identification in
Alzheimer's Disease [7.594681424335177]
アルツハイマー病(英: Alzheimers disease、AD)は、β-アミロイド、病理学的タウ、神経変性を特徴とする異種多時性神経変性疾患である。
本稿では,AD病理学に確立されたドメイン知識を反応拡散モデルにより組み込んだ新しい病理組織形成ネットワーク(PSSN)を提案する。
論文 参考訳(メタデータ) (2022-10-12T02:52:00Z) - Neuro-symbolic Neurodegenerative Disease Modeling as Probabilistic
Programmed Deep Kernels [93.58854458951431]
本稿では、神経変性疾患のパーソナライズされた予測モデリングのための、確率的プログラムによる深層カーネル学習手法を提案する。
我々の分析は、ニューラルネットワークとシンボリック機械学習のアプローチのスペクトルを考慮する。
我々は、アルツハイマー病の予測問題について評価を行い、深層学習を超越した結果を得た。
論文 参考訳(メタデータ) (2020-09-16T15:16:03Z) - A Survey on Deep Learning for Neuroimaging-based Brain Disorder Analysis [38.213459556446765]
深層学習は、最近、構造的磁気共鳴画像(MRI)、機能的MRI、ポジトロン放射断層撮影(PET)などの神経画像の解析に使われている。
本稿では、ニューロイメージングに基づく脳障害解析におけるディープラーニング手法の適用について概説する。
論文 参考訳(メタデータ) (2020-05-10T04:20:50Z) - A Graph Gaussian Embedding Method for Predicting Alzheimer's Disease
Progression with MEG Brain Networks [59.15734147867412]
アルツハイマー病(AD)に関連する機能的脳ネットワークの微妙な変化を特徴付けることは、疾患進行の早期診断と予測に重要である。
我々は、多重グラフガウス埋め込みモデル(MG2G)と呼ばれる新しいディープラーニング手法を開発した。
我々はMG2Gを用いて、MEG脳ネットワークの内在性潜在性次元を検出し、軽度認知障害(MCI)患者のADへの進行を予測し、MCIに関連するネットワーク変化を伴う脳領域を同定した。
論文 参考訳(メタデータ) (2020-05-08T02:29:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。