Travel the Same Path: A Novel TSP Solving Strategy
- URL: http://arxiv.org/abs/2210.05906v1
- Date: Wed, 12 Oct 2022 03:56:37 GMT
- Title: Travel the Same Path: A Novel TSP Solving Strategy
- Authors: Pingbang Hu
- Abstract summary: We consider the imitation learning framework, which helps a deterministic algorithm making good choices whenever it needs to.
We demonstrate a strong generalization ability of a graph neural network trained under the imitation learning framework.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we provide a novel strategy for solving Traveling Salesman
Problem, which is a famous combinatorial optimization problem studied intensely
in the TCS community. In particular, we consider the imitation learning
framework, which helps a deterministic algorithm making good choices whenever
it needs to, resulting in a speed up while maintaining the exactness of the
solution without suffering from the unpredictability and a potential large
deviation.
Furthermore, we demonstrate a strong generalization ability of a graph neural
network trained under the imitation learning framework. Specifically, the model
is capable of solving a large instance of TSP faster than the baseline while
has only seen small TSP instances when training.
Related papers
- Towards a Better Theoretical Understanding of Independent Subnetwork Training [56.24689348875711]
We take a closer theoretical look at Independent Subnetwork Training (IST)
IST is a recently proposed and highly effective technique for solving the aforementioned problems.
We identify fundamental differences between IST and alternative approaches, such as distributed methods with compressed communication.
arXiv Detail & Related papers (2023-06-28T18:14:22Z) - MARLIN: Soft Actor-Critic based Reinforcement Learning for Congestion
Control in Real Networks [63.24965775030673]
We propose a novel Reinforcement Learning (RL) approach to design generic Congestion Control (CC) algorithms.
Our solution, MARLIN, uses the Soft Actor-Critic algorithm to maximize both entropy and return.
We trained MARLIN on a real network with varying background traffic patterns to overcome the sim-to-real mismatch.
arXiv Detail & Related papers (2023-02-02T18:27:20Z) - Learning to Optimize Permutation Flow Shop Scheduling via Graph-based
Imitation Learning [70.65666982566655]
Permutation flow shop scheduling (PFSS) is widely used in manufacturing systems.
We propose to train the model via expert-driven imitation learning, which accelerates convergence more stably and accurately.
Our model's network parameters are reduced to only 37% of theirs, and the solution gap of our model towards the expert solutions decreases from 6.8% to 1.3% on average.
arXiv Detail & Related papers (2022-10-31T09:46:26Z) - Unsupervised Training for Neural TSP Solver [2.9398911304923447]
We introduce a novel unsupervised learning approach for solving the travelling salesman problem.
We use a relaxation of an integer linear program for TSP to construct a loss function that does not require correct instance labels.
Our approach is also more stable and easier to train than reinforcement learning.
arXiv Detail & Related papers (2022-07-27T17:33:29Z) - Combining Reinforcement Learning and Optimal Transport for the Traveling
Salesman Problem [18.735056206844202]
We show that we can construct a model capable of learning without supervision and inferences significantly faster than current autoregressive approaches.
We also empirically evaluate the benefits of including optimal transport algorithms within deep learning models to enforce assignment constraints during end-to-end training.
arXiv Detail & Related papers (2022-03-02T07:21:56Z) - Path Regularization: A Convexity and Sparsity Inducing Regularization
for Parallel ReLU Networks [75.33431791218302]
We study the training problem of deep neural networks and introduce an analytic approach to unveil hidden convexity in the optimization landscape.
We consider a deep parallel ReLU network architecture, which also includes standard deep networks and ResNets as its special cases.
arXiv Detail & Related papers (2021-10-18T18:00:36Z) - Better than the Best: Gradient-based Improper Reinforcement Learning for
Network Scheduling [60.48359567964899]
We consider the problem of scheduling in constrained queueing networks with a view to minimizing packet delay.
We use a policy gradient based reinforcement learning algorithm that produces a scheduler that performs better than the available atomic policies.
arXiv Detail & Related papers (2021-05-01T10:18:34Z) - Learning to Sparsify Travelling Salesman Problem Instances [0.5985204759362747]
We use a pruning machine learning as a pre-processing step followed by an exact Programming approach to sparsify the travelling salesman problem.
Our learning approach requires very little training data and is amenable to mathematical analysis.
arXiv Detail & Related papers (2021-04-19T14:35:14Z) - Generalize a Small Pre-trained Model to Arbitrarily Large TSP Instances [55.64521598173897]
This paper tries to train a small-scale model, which could be repetitively used to build heat maps for the traveling salesman problem (TSP)
Heat maps are fed into a reinforcement learning approach (Monte Carlo tree search) to guide the search of high-quality solutions.
Experimental results show that, this new approach clearly outperforms the existing machine learning based TSP algorithms.
arXiv Detail & Related papers (2020-12-19T11:06:30Z) - Learning to Optimise General TSP Instances [2.6782615615913348]
The Travelling Salesman Problem (TSP) is a classical optimisation problem.
Deep learning has been successfully extended to meta-learning, where previous solving efforts assist in learning how to optimise future instances.
This paper introduces a new learning-based approach to solve a variety of different and common TSP problems.
arXiv Detail & Related papers (2020-10-23T07:37:16Z) - Reinforcement Learning for Variable Selection in a Branch and Bound
Algorithm [0.10499611180329801]
We leverage patterns in real-world instances to learn from scratch a new branching strategy optimised for a given problem.
We propose FMSTS, a novel Reinforcement Learning approach specifically designed for this task.
arXiv Detail & Related papers (2020-05-20T13:15:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.