Probabilities Are Not Enough: Formal Controller Synthesis for Stochastic
Dynamical Models with Epistemic Uncertainty
- URL: http://arxiv.org/abs/2210.05989v1
- Date: Wed, 12 Oct 2022 07:57:03 GMT
- Title: Probabilities Are Not Enough: Formal Controller Synthesis for Stochastic
Dynamical Models with Epistemic Uncertainty
- Authors: Thom Badings, Licio Romao, Alessandro Abate, Nils Jansen
- Abstract summary: Capturing uncertainty in models of complex dynamical systems is crucial to designing safe controllers.
Several approaches use formal abstractions to synthesize policies that satisfy temporal specifications related to safety and reachability.
Our contribution is a novel abstraction-based controller method for continuous-state models with noise, uncertain parameters, and external disturbances.
- Score: 68.00748155945047
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Capturing uncertainty in models of complex dynamical systems is crucial to
designing safe controllers. Stochastic noise causes aleatoric uncertainty,
whereas imprecise knowledge of model parameters and the presence of external
disturbances lead to epistemic uncertainty. Several approaches use formal
abstractions to synthesize policies that satisfy temporal specifications
related to safety and reachability. However, the underlying models exclusively
capture aleatoric but not epistemic uncertainty, and thus require that model
parameters and disturbances are known precisely. Our contribution to overcoming
this restriction is a novel abstraction-based controller synthesis method for
continuous-state models with stochastic noise, uncertain parameters, and
external disturbances. By sampling techniques and robust analysis, we capture
both aleatoric and epistemic uncertainty, with a user-specified confidence
level, in the transition probability intervals of a so-called interval Markov
decision process (iMDP). We then synthesize an optimal policy on this abstract
iMDP, which translates (with the specified confidence level) to a feedback
controller for the continuous model, with the same performance guarantees. Our
experimental benchmarks confirm that accounting for epistemic uncertainty leads
to controllers that are more robust against variations in parameter values.
Related papers
- Correct-by-Construction Control for Stochastic and Uncertain Dynamical
Models via Formal Abstractions [44.99833362998488]
We develop an abstraction framework that can be used to solve this problem under various modeling assumptions.
We use state-of-the-art verification techniques to compute an optimal policy on the iMDP with guarantees for satisfying the given specification.
We then show that, by construction, we can refine this policy into a feedback controller for which these guarantees carry over to the dynamical model.
arXiv Detail & Related papers (2023-11-16T11:03:54Z) - Robust Control for Dynamical Systems With Non-Gaussian Noise via Formal
Abstractions [59.605246463200736]
We present a novel controller synthesis method that does not rely on any explicit representation of the noise distributions.
First, we abstract the continuous control system into a finite-state model that captures noise by probabilistic transitions between discrete states.
We use state-of-the-art verification techniques to provide guarantees on the interval Markov decision process and compute a controller for which these guarantees carry over to the original control system.
arXiv Detail & Related papers (2023-01-04T10:40:30Z) - Formal Controller Synthesis for Markov Jump Linear Systems with
Uncertain Dynamics [64.72260320446158]
We propose a method for synthesising controllers for Markov jump linear systems.
Our method is based on a finite-state abstraction that captures both the discrete (mode-jumping) and continuous (stochastic linear) behaviour of the MJLS.
We apply our method to multiple realistic benchmark problems, in particular, a temperature control and an aerial vehicle delivery problem.
arXiv Detail & Related papers (2022-12-01T17:36:30Z) - On Uncertainty in Deep State Space Models for Model-Based Reinforcement
Learning [21.63642325390798]
We show that RSSMs use a suboptimal inference scheme and that models trained using this inference overestimate the aleatoric uncertainty of the ground truth system.
We propose an alternative approach building on well-understood components for modeling aleatoric and epistemic uncertainty, dubbed Variational Recurrent Kalman Network (VRKN)
Our experiments show that using the VRKN instead of the RSSM improves performance in tasks where appropriately capturing aleatoric uncertainty is crucial.
arXiv Detail & Related papers (2022-10-17T16:59:48Z) - Dense Uncertainty Estimation via an Ensemble-based Conditional Latent
Variable Model [68.34559610536614]
We argue that the aleatoric uncertainty is an inherent attribute of the data and can only be correctly estimated with an unbiased oracle model.
We propose a new sampling and selection strategy at train time to approximate the oracle model for aleatoric uncertainty estimation.
Our results show that our solution achieves both accurate deterministic results and reliable uncertainty estimation.
arXiv Detail & Related papers (2021-11-22T08:54:10Z) - Sampling-Based Robust Control of Autonomous Systems with Non-Gaussian
Noise [59.47042225257565]
We present a novel planning method that does not rely on any explicit representation of the noise distributions.
First, we abstract the continuous system into a discrete-state model that captures noise by probabilistic transitions between states.
We capture these bounds in the transition probability intervals of a so-called interval Markov decision process (iMDP)
arXiv Detail & Related papers (2021-10-25T06:18:55Z) - Probabilistic robust linear quadratic regulators with Gaussian processes [73.0364959221845]
Probabilistic models such as Gaussian processes (GPs) are powerful tools to learn unknown dynamical systems from data for subsequent use in control design.
We present a novel controller synthesis for linearized GP dynamics that yields robust controllers with respect to a probabilistic stability margin.
arXiv Detail & Related papers (2021-05-17T08:36:18Z) - Deep Learning based Uncertainty Decomposition for Real-time Control [9.067368638784355]
We propose a novel method for detecting the absence of training data using deep learning.
We show its advantages over existing approaches on synthetic and real-world datasets.
We further demonstrate the practicality of this uncertainty estimate in deploying online data-efficient control on a simulated quadcopter.
arXiv Detail & Related papers (2020-10-06T10:46:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.