Deep Learning based Uncertainty Decomposition for Real-time Control
- URL: http://arxiv.org/abs/2010.02613v3
- Date: Wed, 12 Jul 2023 10:00:51 GMT
- Title: Deep Learning based Uncertainty Decomposition for Real-time Control
- Authors: Neha Das, Jonas Umlauft, Armin Lederer, Thomas Beckers, Sandra Hirche
- Abstract summary: We propose a novel method for detecting the absence of training data using deep learning.
We show its advantages over existing approaches on synthetic and real-world datasets.
We further demonstrate the practicality of this uncertainty estimate in deploying online data-efficient control on a simulated quadcopter.
- Score: 9.067368638784355
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Data-driven control in unknown environments requires a clear understanding of
the involved uncertainties for ensuring safety and efficient exploration. While
aleatoric uncertainty that arises from measurement noise can often be
explicitly modeled given a parametric description, it can be harder to model
epistemic uncertainty, which describes the presence or absence of training
data. The latter can be particularly useful for implementing exploratory
control strategies when system dynamics are unknown. We propose a novel method
for detecting the absence of training data using deep learning, which gives a
continuous valued scalar output between $0$ (indicating low uncertainty) and
$1$ (indicating high uncertainty). We utilize this detector as a proxy for
epistemic uncertainty and show its advantages over existing approaches on
synthetic and real-world datasets. Our approach can be directly combined with
aleatoric uncertainty estimates and allows for uncertainty estimation in
real-time as the inference is sample-free unlike existing approaches for
uncertainty modeling. We further demonstrate the practicality of this
uncertainty estimate in deploying online data-efficient control on a simulated
quadcopter acted upon by an unknown disturbance model.
Related papers
- One step closer to unbiased aleatoric uncertainty estimation [71.55174353766289]
We propose a new estimation method by actively de-noising the observed data.
By conducting a broad range of experiments, we demonstrate that our proposed approach provides a much closer approximation to the actual data uncertainty than the standard method.
arXiv Detail & Related papers (2023-12-16T14:59:11Z) - ALUM: Adversarial Data Uncertainty Modeling from Latent Model
Uncertainty Compensation [25.67258563807856]
We propose a novel method called ALUM to handle the model uncertainty and data uncertainty in a unified scheme.
Our proposed ALUM is model-agnostic which can be easily implemented into any existing deep model with little extra overhead.
arXiv Detail & Related papers (2023-03-29T17:24:12Z) - Reliability-Aware Prediction via Uncertainty Learning for Person Image
Retrieval [51.83967175585896]
UAL aims at providing reliability-aware predictions by considering data uncertainty and model uncertainty simultaneously.
Data uncertainty captures the noise" inherent in the sample, while model uncertainty depicts the model's confidence in the sample's prediction.
arXiv Detail & Related papers (2022-10-24T17:53:20Z) - Probabilities Are Not Enough: Formal Controller Synthesis for Stochastic
Dynamical Models with Epistemic Uncertainty [68.00748155945047]
Capturing uncertainty in models of complex dynamical systems is crucial to designing safe controllers.
Several approaches use formal abstractions to synthesize policies that satisfy temporal specifications related to safety and reachability.
Our contribution is a novel abstraction-based controller method for continuous-state models with noise, uncertain parameters, and external disturbances.
arXiv Detail & Related papers (2022-10-12T07:57:03Z) - Dense Uncertainty Estimation via an Ensemble-based Conditional Latent
Variable Model [68.34559610536614]
We argue that the aleatoric uncertainty is an inherent attribute of the data and can only be correctly estimated with an unbiased oracle model.
We propose a new sampling and selection strategy at train time to approximate the oracle model for aleatoric uncertainty estimation.
Our results show that our solution achieves both accurate deterministic results and reliable uncertainty estimation.
arXiv Detail & Related papers (2021-11-22T08:54:10Z) - Adversarial Attack for Uncertainty Estimation: Identifying Critical
Regions in Neural Networks [0.0]
We propose a novel method to capture data points near decision boundary in neural network that are often referred to a specific type of uncertainty.
Uncertainty estimates are derived from the input perturbations, unlike previous studies that provide perturbations on the model's parameters.
We show that the proposed method has revealed a significant outperformance over other methods and provided less risk to capture model uncertainty in machine learning.
arXiv Detail & Related papers (2021-07-15T21:30:26Z) - Probabilistic robust linear quadratic regulators with Gaussian processes [73.0364959221845]
Probabilistic models such as Gaussian processes (GPs) are powerful tools to learn unknown dynamical systems from data for subsequent use in control design.
We present a novel controller synthesis for linearized GP dynamics that yields robust controllers with respect to a probabilistic stability margin.
arXiv Detail & Related papers (2021-05-17T08:36:18Z) - Temporal Difference Uncertainties as a Signal for Exploration [76.6341354269013]
An effective approach to exploration in reinforcement learning is to rely on an agent's uncertainty over the optimal policy.
In this paper, we highlight that value estimates are easily biased and temporally inconsistent.
We propose a novel method for estimating uncertainty over the value function that relies on inducing a distribution over temporal difference errors.
arXiv Detail & Related papers (2020-10-05T18:11:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.