SemlaFlow -- Efficient 3D Molecular Generation with Latent Attention and Equivariant Flow Matching
- URL: http://arxiv.org/abs/2406.07266v3
- Date: Fri, 28 Feb 2025 16:56:08 GMT
- Title: SemlaFlow -- Efficient 3D Molecular Generation with Latent Attention and Equivariant Flow Matching
- Authors: Ross Irwin, Alessandro Tibo, Jon Paul Janet, Simon Olsson,
- Abstract summary: Semla is a scalable E(3)-equivariant message passing architecture.<n>SemlaFlow is trained to generate a joint distribution over atom types, coordinates, bond types and formal charges.<n>Our model produces state-of-the-art results on benchmark datasets with as few as 20 sampling steps.
- Score: 43.56824843205882
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Methods for jointly generating molecular graphs along with their 3D conformations have gained prominence recently due to their potential impact on structure-based drug design. Current approaches, however, often suffer from very slow sampling times or generate molecules with poor chemical validity. Addressing these limitations, we propose Semla, a scalable E(3)-equivariant message passing architecture. We further introduce an unconditional 3D molecular generation model, SemlaFlow, which is trained using equivariant flow matching to generate a joint distribution over atom types, coordinates, bond types and formal charges. Our model produces state-of-the-art results on benchmark datasets with as few as 20 sampling steps, corresponding to a two order-of-magnitude speedup compared to state-of-the-art. Furthermore, we highlight limitations of current evaluation methods for 3D generation and propose new benchmark metrics for unconditional molecular generators. Finally, using these new metrics, we compare our model's ability to generate high quality samples against current approaches and further demonstrate SemlaFlow's strong performance.
Related papers
- Towards Unified Latent Space for 3D Molecular Latent Diffusion Modeling [80.59215359958934]
3D molecule generation is crucial for drug discovery and material science.
Existing approaches typically maintain separate latent spaces for invariant and equivariant modalities.
We propose a multi-modal VAE that compresses 3D molecules into latent sequences from a unified latent space.
arXiv Detail & Related papers (2025-03-19T08:56:13Z) - Straight-Line Diffusion Model for Efficient 3D Molecular Generation [25.63489191042975]
We introduce a novel Straight-Line Diffusion Model (SLDM) to tackle this problem.
SLDM state-of-the-art performance on 3D molecule generation benchmarks, delivers a 100-fold improvement in sampling efficiency.
experiments on toy data and image generation tasks validate the generality and robustness of SLDM.
arXiv Detail & Related papers (2025-03-04T13:23:58Z) - EquiFlow: Equivariant Conditional Flow Matching with Optimal Transport for 3D Molecular Conformation Prediction [14.664189950787739]
We propose EquiFlow, an equivariant conditional flow matching model with optimal transport.
It uses a modified Equiformer model to encode molecular conformations along with their atomic and bond properties into higher-degree embeddings.
Experiments on the QM9 dataset show that EquiFlow predicts small molecule conformations more accurately than current state-of-the-art models.
arXiv Detail & Related papers (2024-12-15T06:48:22Z) - Exploring Discrete Flow Matching for 3D De Novo Molecule Generation [0.0]
Flow matching is a recently proposed generative modeling framework that has achieved impressive performance on a variety of tasks.
We present FlowMol-CTMC, an open-source model that achieves state of the art performance for 3D de novo design with fewer learnable parameters than existing methods.
arXiv Detail & Related papers (2024-11-25T18:27:39Z) - Improving Molecular Graph Generation with Flow Matching and Optimal Transport [8.2504828891983]
GGFlow is a discrete flow matching generative model incorporating optimal transport for molecular graphs.
It incorporates an edge-augmented graph transformer to enable the direct communications among chemical bounds.
GGFlow demonstrates superior performance on both unconditional and conditional molecule generation tasks.
arXiv Detail & Related papers (2024-11-08T16:27:27Z) - Conditional Synthesis of 3D Molecules with Time Correction Sampler [58.0834973489875]
Time-Aware Conditional Synthesis (TACS) is a novel approach to conditional generation on diffusion models.
It integrates adaptively controlled plug-and-play "online" guidance into a diffusion model, driving samples toward the desired properties.
arXiv Detail & Related papers (2024-11-01T12:59:25Z) - Flow Generator Matching [35.371071097381346]
Flow Generator Matching (FGM) is designed to accelerate the sampling of flow-matching models into a one-step generation.
On the CIFAR10 unconditional generation benchmark, our one-step FGM model achieves a new record Fr'echet Inception Distance (FID) score of 3.08.
MM-DiT-FGM one-step text-to-image model demonstrates outstanding industry-level performance.
arXiv Detail & Related papers (2024-10-25T05:41:28Z) - FlowTurbo: Towards Real-time Flow-Based Image Generation with Velocity Refiner [70.90505084288057]
Flow-based models tend to produce a straighter sampling trajectory during the sampling process.
We introduce several techniques including a pseudo corrector and sample-aware compilation to further reduce inference time.
FlowTurbo reaches an FID of 2.12 on ImageNet with 100 (ms / img) and FID of 3.93 with 38 (ms / img)
arXiv Detail & Related papers (2024-09-26T17:59:51Z) - Mixed Continuous and Categorical Flow Matching for 3D De Novo Molecule Generation [0.0]
Flow matching is a recently proposed generative modeling framework that generalizes diffusion models.
We extend the flow matching framework to categorical data by constructing flows that are constrained to exist on a continuous representation of categorical data known as the probability simplex.
We find that, in practice, a simpler approach that makes no accommodations for the categorical nature of the data yields equivalent or superior performance.
arXiv Detail & Related papers (2024-04-30T17:37:21Z) - Equivariant Flow Matching with Hybrid Probability Transport [69.11915545210393]
Diffusion Models (DMs) have demonstrated effectiveness in generating feature-rich geometries.
DMs typically suffer from unstable probability dynamics with inefficient sampling speed.
We introduce geometric flow matching, which enjoys the advantages of both equivariant modeling and stabilized probability dynamics.
arXiv Detail & Related papers (2023-12-12T11:13:13Z) - Guided Flows for Generative Modeling and Decision Making [55.42634941614435]
We show that Guided Flows significantly improves the sample quality in conditional image generation and zero-shot text synthesis-to-speech.
Notably, we are first to apply flow models for plan generation in the offline reinforcement learning setting ax speedup in compared to diffusion models.
arXiv Detail & Related papers (2023-11-22T15:07:59Z) - SE(3)-Stochastic Flow Matching for Protein Backbone Generation [54.951832422425454]
We introduce FoldFlow, a series of novel generative models of increasing modeling power based on the flow-matching paradigm over $3mathrmD$ rigid motions.
Our family of FoldFlowgenerative models offers several advantages over previous approaches to the generative modeling of proteins.
arXiv Detail & Related papers (2023-10-03T19:24:24Z) - Modular Flows: Differential Molecular Generation [18.41106104201439]
Flows can generate molecules effectively by inverting the encoding process.
Existing flow models require artifactual dequantization or specific node/edge orderings.
We develop continuous normalizing E(3)-equivariant flows, based on a system of node ODEs and a graph PDE.
Our models can be cast as message-passing temporal networks, and result in superlative performance on the tasks of density estimation and molecular generation.
arXiv Detail & Related papers (2022-10-12T09:08:35Z) - Equivariant Diffusion for Molecule Generation in 3D [74.289191525633]
This work introduces a diffusion model for molecule computation generation in 3D that is equivariant to Euclidean transformations.
Experimentally, the proposed method significantly outperforms previous 3D molecular generative methods regarding the quality of generated samples and efficiency at training time.
arXiv Detail & Related papers (2022-03-31T12:52:25Z) - Learning Neural Generative Dynamics for Molecular Conformation
Generation [89.03173504444415]
We study how to generate molecule conformations (textiti.e., 3D structures) from a molecular graph.
We propose a novel probabilistic framework to generate valid and diverse conformations given a molecular graph.
arXiv Detail & Related papers (2021-02-20T03:17:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.