On-Demand Entanglement of Molecules in a Reconfigurable Optical Tweezer
Array
- URL: http://arxiv.org/abs/2210.06309v1
- Date: Wed, 12 Oct 2022 15:23:04 GMT
- Title: On-Demand Entanglement of Molecules in a Reconfigurable Optical Tweezer
Array
- Authors: Connor M. Holland, Yukai Lu, Lawrence W. Cheuk
- Abstract summary: Entanglement is crucial to many quantum applications including quantum information processing, simulation of quantum many-body systems, and quantum-enhanced sensing.
Here we demonstrate, for the first time, on-demand entanglement of individually controlled molecules.
We realize an entangling two-qubit gate, and use it to deterministically create Bell pairs.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Entanglement is crucial to many quantum applications including quantum
information processing, simulation of quantum many-body systems, and
quantum-enhanced sensing. Molecules, because of their rich internal structure
and interactions, have been proposed as a promising platform for quantum
science. Deterministic entanglement of individually controlled molecules has
nevertheless been a long-standing experimental challenge. Here we demonstrate,
for the first time, on-demand entanglement of individually prepared molecules.
Using the electric dipolar interaction between pairs of molecules prepared
using a reconfigurable optical tweezer array, we realize an entangling
two-qubit gate, and use it to deterministically create Bell pairs. Our results
demonstrate the key building blocks needed for quantum information processing,
simulation of quantum spin models, and quantum-enhanced sensing. They also open
up new possibilities such as using trapped molecules for quantum-enhanced
fundamental physics tests and exploring collisions and chemical reactions with
entangled matter.
Related papers
- Long-lived entanglement of molecules in magic-wavelength optical tweezers [41.94295877935867]
We present the first realisation of a microwave-driven entangling gate between two molecules.
We show that the magic-wavelength trap preserves the entanglement, with no measurable decay over 0.5 s.
The extension of precise quantum control to complex molecular systems will allow their additional degrees of freedom to be exploited across many domains of quantum science.
arXiv Detail & Related papers (2024-08-27T09:28:56Z) - Quantum Information Processing with Molecular Nanomagnets: an introduction [49.89725935672549]
We provide an introduction to Quantum Information Processing, focusing on a promising setup for its implementation.
We introduce the basic tools to understand and design quantum algorithms, always referring to their actual realization on a molecular spin architecture.
We present some examples of quantum algorithms proposed and implemented on a molecular spin qudit hardware.
arXiv Detail & Related papers (2024-05-31T16:43:20Z) - An optical tweezer array of ultracold polyatomic molecules [0.0]
We create an optical tweezer array of individual polyatomic molecules, CaOH, with quantum control of their internal quantum state.
The complex quantum structure of CaOH results in a non-trivial dependence of the molecules' behavior on the tweezer light wavelength.
We control this interaction and directly and nondestructively image individual molecules in the tweezer array with >90% fidelity.
arXiv Detail & Related papers (2023-11-13T18:15:41Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Dipolar spin-exchange and entanglement between molecules in an optical
tweezer array [0.0]
Ultracold polar molecules are promising candidate qubits for quantum computing.
Using a molecular optical tweezer array, single molecules can be moved and separately addressed for qubit operations.
We demonstrate a two-qubit gate to generate entanglement deterministically, an essential resource for all quantum information applications.
arXiv Detail & Related papers (2022-11-17T18:53:42Z) - Recompilation-enhanced simulation of electron-phonon dynamics on IBM
Quantum computers [62.997667081978825]
We consider the absolute resource cost for gate-based quantum simulation of small electron-phonon systems.
We perform experiments on IBM quantum hardware for both weak and strong electron-phonon coupling.
Despite significant device noise, through the use of approximate circuit recompilation we obtain electron-phonon dynamics on current quantum computers comparable to exact diagonalisation.
arXiv Detail & Related papers (2022-02-16T19:00:00Z) - A perspective on scaling up quantum computation with molecular spins [0.0]
Chemical design allows embedding nontrivial quantum functionalities in each molecular unit.
We discuss how to achieve this goal by the coupling to on-chip superconducting resonators.
arXiv Detail & Related papers (2021-05-03T07:11:36Z) - Calculation of the ground-state Stark effect in small molecules using
the variational quantum eigensolver [0.0]
We study a quantum simulation for the hydrogen (H2) and lithium hydride (LiH) molecules, at an actual commercially available quantum computer, the IBM Q.
Using the Variational Quantum Eigensolver (VQE) method, we study the molecule's ground state energy versus interatomic distance, under the action of stationary electric fields.
arXiv Detail & Related papers (2021-03-22T11:49:42Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Engineering analog quantum chemistry Hamiltonians using cold atoms in
optical lattices [69.50862982117127]
We benchmark the working conditions of the numerically analog simulator and find less demanding experimental setups.
We also provide a deeper understanding of the errors of the simulation appearing due to discretization and finite size effects.
arXiv Detail & Related papers (2020-11-28T11:23:06Z) - Quantum Simulation of 2D Quantum Chemistry in Optical Lattices [59.89454513692418]
We propose an analog simulator for discrete 2D quantum chemistry models based on cold atoms in optical lattices.
We first analyze how to simulate simple models, like the discrete versions of H and H$+$, using a single fermionic atom.
We then show that a single bosonic atom can mediate an effective Coulomb repulsion between two fermions, leading to the analog of molecular Hydrogen in two dimensions.
arXiv Detail & Related papers (2020-02-21T16:00:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.