Exploring the optimality of approximate state preparation quantum
circuits with a genetic algorithm
- URL: http://arxiv.org/abs/2210.06411v2
- Date: Tue, 4 Apr 2023 07:25:04 GMT
- Title: Exploring the optimality of approximate state preparation quantum
circuits with a genetic algorithm
- Authors: Tom Rindell, Berat Yenilen, Niklas Halonen, Arttu P\"onni, Ilkka
Tittonen, Matti Raasakka
- Abstract summary: We study the approximate state preparation problem on noisy intermediate-scale quantum (NISQ) computers.
We apply a genetic algorithm to generate quantum circuits for state preparation.
We find substantial improvements to the fidelity in preparing Haar random states with a limited number of CNOT gates.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study the approximate state preparation problem on noisy
intermediate-scale quantum (NISQ) computers by applying a genetic algorithm to
generate quantum circuits for state preparation. The algorithm can account for
the specific characteristics of the physical machine in the evaluation of
circuits, such as the native gate set and qubit connectivity. We use our
genetic algorithm to optimize the circuits provided by the low-rank state
preparation algorithm introduced by Araujo et al., and find substantial
improvements to the fidelity in preparing Haar random states with a limited
number of CNOT gates. Moreover, we observe that already for a 5-qubit quantum
processor with limited qubit connectivity and significant noise levels (IBM
Falcon 5T), the maximal fidelity for Haar random states is achieved by a short
approximate state preparation circuit instead of the exact preparation circuit.
We also present a theoretical analysis of approximate state preparation circuit
complexity to motivate our findings. Our genetic algorithm for quantum circuit
discovery is freely available at https://github.com/beratyenilen/qc-ga .
Related papers
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Quantum Compiling with Reinforcement Learning on a Superconducting Processor [55.135709564322624]
We develop a reinforcement learning-based quantum compiler for a superconducting processor.
We demonstrate its capability of discovering novel and hardware-amenable circuits with short lengths.
Our study exemplifies the codesign of the software with hardware for efficient quantum compilation.
arXiv Detail & Related papers (2024-06-18T01:49:48Z) - Non-unitary Coupled Cluster Enabled by Mid-circuit Measurements on Quantum Computers [37.69303106863453]
We propose a state preparation method based on coupled cluster (CC) theory, which is a pillar of quantum chemistry on classical computers.
Our approach leads to a reduction of the classical computation overhead, and the number of CNOT and T gates by 28% and 57% on average.
arXiv Detail & Related papers (2024-06-17T14:10:10Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - Adaptive Circuit Learning of Born Machine: Towards Realization of
Amplitude Embedding and Data Loading [7.88657961743755]
We present a novel algorithm "Adaptive Circuit Learning of Born Machine" (ACLBM)
Our algorithm is tailored to selectively integrate two-qubit entangled gates that best capture the complex entanglement present within the target state.
Empirical results underscore the proficiency of our approach in encoding real-world data through amplitude embedding.
arXiv Detail & Related papers (2023-11-29T16:47:31Z) - Sparse Quantum State Preparation for Strongly Correlated Systems [0.0]
In principle, the encoding of the exponentially scaling many-electron wave function onto a linearly scaling qubit register offers a promising solution to overcome the limitations of traditional quantum chemistry methods.
An essential requirement for ground state quantum algorithms to be practical is the initialisation of the qubits to a high-quality approximation of the sought-after ground state.
Quantum State Preparation (QSP) allows the preparation of approximate eigenstates obtained from classical calculations, but it is frequently treated as an oracle in quantum information.
arXiv Detail & Related papers (2023-11-06T18:53:50Z) - GASP -- A Genetic Algorithm for State Preparation [0.0]
We present a genetic algorithm for state preparation (GASP) which generates relatively low-depth quantum circuits for initialising a quantum computer in a specified quantum state.
GASP can produce more efficient circuits of a given accuracy with lower depth and gate counts than other methods.
arXiv Detail & Related papers (2023-02-22T04:41:01Z) - Improved iterative quantum algorithm for ground-state preparation [4.921552273745794]
We propose an improved iterative quantum algorithm to prepare the ground state of a Hamiltonian system.
Our approach has advantages including the higher success probability at each iteration, the measurement precision-independent sampling complexity, the lower gate complexity, and only quantum resources are required when the ancillary state is well prepared.
arXiv Detail & Related papers (2022-10-16T05:57:43Z) - Compilation of algorithm-specific graph states for quantum circuits [55.90903601048249]
We present a quantum circuit compiler that prepares an algorithm-specific graph state from quantum circuits described in high level languages.
The computation can then be implemented using a series of non-Pauli measurements on this graph state.
arXiv Detail & Related papers (2022-09-15T14:52:31Z) - Decomposition of Matrix Product States into Shallow Quantum Circuits [62.5210028594015]
tensor network (TN) algorithms can be mapped to parametrized quantum circuits (PQCs)
We propose a new protocol for approximating TN states using realistic quantum circuits.
Our results reveal one particular protocol, involving sequential growth and optimization of the quantum circuit, to outperform all other methods.
arXiv Detail & Related papers (2022-09-01T17:08:41Z) - Optimal quantum control via genetic algorithms for quantum state
engineering in driven-resonator mediated networks [68.8204255655161]
We employ a machine learning-enabled approach to quantum state engineering based on evolutionary algorithms.
We consider a network of qubits -- encoded in the states of artificial atoms with no direct coupling -- interacting via a common single-mode driven microwave resonator.
We observe high quantum fidelities and resilience to noise, despite the algorithm being trained in the ideal noise-free setting.
arXiv Detail & Related papers (2022-06-29T14:34:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.